%I #4 Jul 03 2016 00:17:36
%S 6,8,14,21,34,50,77,116,180,283,442,702,1117,1784,2864,4611,7434,
%T 11994,19375,31312,50622,81869,132422,214218,346565,560698,907168,
%U 1467769,2374836,3842502,6217243,10059636,16276758,26336265,42612896,68949024
%N A104449(n+1)+prime(n), sum of a Lucas and the prime sequence.
%C A104449 could be called L31(n), the Lucas sequence starting with 3,1.
%F a(n) = A000285(n)+A000040(n).
%o (UBASIC) 10 'Lucas variations (change value of A in line 30 as appropriate) 20 P=1 30 A=2 40 B=1 50 C=A+B:print C;:R=nxtprm(P):print R;:P=R:print C+R 51 if C=prmdiv(C) then print C;"*":U=U+1 52 if C+R=prmdiv(C+R) then print C+R;"#":V=V+1 60 D=B+C:print D;:R=nxtprm(P):print R;:P=R:print D+R 61 if D=prmdiv(D) then print D;"*":U=U+1 62 if D+R=prmdiv(D+R) then print D+R;"#":V=V+1 63 print U;V 70 stop 80 A=C:B=D:goto 50
%Y Cf. A000285, A096362, A160243.
%K easy,nonn
%O 1,1
%A _Enoch Haga_, May 05 2009
%E Edited by _R. J. Mathar_, May 12 2009