%I #13 Sep 08 2022 08:45:45
%S 5,7,12,18,29,42,64,95,146,228,353,558,884,1407,2254,3624,5837,9410,
%T 15194,24547,39676,64158,103765,167850,271540,439305,710750,1149958,
%U 1860607,3010462,4870974,7881327,12752180,20633378,33385431,54018672,87403960,141422487
%N a(n) = Lucas(n+1) + prime(n).
%C Lucas(n) = A000032(n), prime(n) = A000040(n).
%H Harvey P. Dale, <a href="/A160243/b160243.txt">Table of n, a(n) for n = 1..1000</a>
%e a(1) = Lucas(2) + prime(1) = 3 + 2 = 5.
%e a(4) = Lucas(5) + prime(4) = 11 + 7 = 18.
%t Table[LucasL[n+1]+Prime[n],{n,40}] (* _Harvey P. Dale_, May 25 2021 *)
%o (UBASIC) 10 'Lucas variations (change value of A in line 30 as appropriate) 20 P=1 30 A=2 40 B=1 50 C=A+B:print C;:R=nxtprm(P):print R;:P=R:print C+R 51 if C=prmdiv(C) then print C;"*":U=U+1 52 if C+R=prmdiv(C+R) then print C+R;"#":V=V+1 60 D=B+C:print D;:R=nxtprm(P):print R;:P=R:print D+R 61 if D=prmdiv(D) then print D;"*":U=U+1 62 if D+R=prmdiv(D+R) then print D+R;"#":V=V+1 63 print U;V 70 stop 80 A=C:B=D:goto 50
%o (Magma) [ Lucas(n+1)+NthPrime(n): n in [1..40] ]; // _Klaus Brockhaus_, May 20 2009
%Y A000032 (Lucas numbers, beginning at 2), A000040 (primes), A096362 (order in which prime factors first occur in the Lucas sequence), A160244 (A000285(n) + A000040(n)).
%K easy,nonn
%O 1,1
%A _Enoch Haga_, May 05 2009
%E Edited by _Klaus Brockhaus_, May 20 2009
%E Corrected and extended by _Harvey P. Dale_, May 25 2021