login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160225 Numerator of Hermite(n, 2/29). 1
1, 4, -1666, -20120, 8326156, 168671984, -69348284024, -1979630798624, 808588172904080, 29872264717900864, -12120918702550359584, -550935167365293970816, 222057497165125577139904, 12008305406761595815509760, -4807476011385589486479101824 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..100

FORMULA

From G. C. Greubel, Jul 12 2018: (Start)

a(n) = 29^n * Hermite(n, 2/29).

E.g.f.: exp(4*x - 841*x^2).

a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(4/29)^(n-2*k)/(k!*(n-2*k)!)). (End)

EXAMPLE

Numerators of 1, 4/29, -1666/841, -20120/24389, 8326156/707281

MATHEMATICA

Table[Numerator[HermiteH[n, 2/29]], {n, 0, 15}] (* Wesley Ivan Hurt, Feb 25 2014 *)

Table[29^n*HermiteH[n, 2/29], {n, 0, 30}] (* G. C. Greubel, Jul 12 2018~ *)

PROG

(PARI) a(n)=numerator(polhermite(n, 2/29)) \\ Charles R Greathouse IV, Jan 29 2016

(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(4/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 12 2018

CROSSREFS

Cf. A009973 (denominators).

Sequence in context: A229664 A265661 A280793 * A316484 A278794 A141090

Adjacent sequences:  A160222 A160223 A160224 * A160226 A160227 A160228

KEYWORD

sign,frac

AUTHOR

N. J. A. Sloane, Nov 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 23 21:51 EST 2020. Contains 338603 sequences. (Running on oeis4.)