login
A160200
Positive numbers y such that y^2 is of the form x^2+(x+761)^2 with integer x.
3
541, 761, 1465, 1781, 3805, 8249, 10145, 22069, 48029, 59089, 128609, 279925, 344389, 749585, 1631521, 2007245, 4368901, 9509201, 11699081, 25463821, 55423685, 68187241, 148414025, 323032909, 397424365, 865020329, 1882773769
OFFSET
1,1
COMMENTS
(-341, a(1)) and (A122694(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+761)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (1003+462*sqrt(2))/761 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (591603+85478*sqrt(2))/761^2 for n mod 3 = 1.
FORMULA
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=541, a(2)=761, a(3)=1465, a(4)=1781, a(5)=3805, a(6)=8249.
G.f.: (1-x)*(541+1302*x+2767*x^2+1302*x^3+541*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 761*A001653(k) for k >= 1.
EXAMPLE
(-341, a(1)) = (-341, 541) is a solution: (-341)^2+(-341+761)^2 = 116281+176400 = 292681 = 541^2.
(A122694(1), a(2)) = (0, 761) is a solution: 0^2+(0+761)^2 = 579121 = 761^2.
(A122694(3), a(4)) = (820, 1781) is a solution: 820^2+(820+761)^2 = 672400+2499561 = 3171961 = 1781^2.
PROG
(PARI) {forstep(n=-344, 10000000, [3, 1], if(issquare(2*n^2+1522*n+579121, &k), print1(k, ", ")))}
CROSSREFS
Cf. A122694, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A160201 (decimal expansion of (1003+462*sqrt(2))/761), A160202 (decimal expansion of (591603+85478*sqrt(2))/761^2).
Sequence in context: A020378 A308799 A308791 * A363717 A112371 A031937
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, May 18 2009
STATUS
approved