|
|
A160194
|
|
Numerator of Hermite(n, 9/28).
|
|
1
|
|
|
1, 9, -311, -9855, 277041, 17946009, -381486279, -45642389679, 636016842465, 148858685615529, -904139249676759, -591663300859964511, -1426321263133495791, 2770347275877071597625, 32201658639821938929561, -14913850922254971477399951, -323570411102447744202418239
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..417
|
|
FORMULA
|
From G. C. Greubel, Jul 12 2018: (Start)
a(n) = 14^n * Hermite(n, 9/28).
E.g.f.: exp(9*x - 196*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(9/14)^(n-2*k)/(k!*(n-2*k)!)). (End)
|
|
EXAMPLE
|
Numerators of 1, 9/14, -311/196, -9855/2744, 277041/38416, ...
|
|
MATHEMATICA
|
Numerator[Table[HermiteH[n, 9/28], {n, 0, 30}]] (* or *) Table[14^n* HermiteH[n, 9/28], {n, 0, 30}] (* G. C. Greubel, Jul 12 2018 *)
|
|
PROG
|
(PARI) a(n)=numerator(polhermite(n, 9/28)) \\ Charles R Greathouse IV, Jan 29 2016
(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(9/14)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 12 2018
|
|
CROSSREFS
|
Cf. A001023 (denominators).
Sequence in context: A296802 A231133 A163702 * A217145 A266835 A288324
Adjacent sequences: A160191 A160192 A160193 * A160195 A160196 A160197
|
|
KEYWORD
|
sign,frac
|
|
AUTHOR
|
N. J. A. Sloane, Nov 12 2009
|
|
STATUS
|
approved
|
|
|
|