This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A160193 Numerator of Hermite(n, 5/28). 2
 1, 5, -367, -5755, 402817, 11037925, -734331695, -29632858075, 1866841880705, 102262852326725, -6074903893493615, -431244900588230075, 24038761085803317505, 2148769817796050860325, -111757677404273451703855, -12351237147086094379982875, 595378957401697424118753025 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..417 FORMULA Conjecture: a(n) -5*a(n-1) +392*(n-1)*a(n-2)=0. - R. J. Mathar, Feb 16 2014 From G. C. Greubel, Jul 09 2018: (Start) a(n) = 14^n * Hermite(n, 5/28). E.g.f.: exp(5*x - 196*x^2). a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(5/14)^(n-2*k)/(k!*(n-2*k)!)). (End) EXAMPLE Numerator of 1, 5/14, -367/196, -5755/2744, 402817/38416, 11037925/537824,.. MAPLE A160193 := proc(n)         orthopoly[H](n, 5/28) ;         numer(%) ; end proc: # R. J. Mathar, Feb 16 2014 MATHEMATICA Numerator/@HermiteH[Range[0, 20], 5/28] (* Harvey P. Dale, Jul 11 2011 *) Table[14^n*HermiteH[n, 5/28], {n, 0, 30}] (* G. C. Greubel, Jul 09 2018 *) PROG (PARI) a(n)=numerator(polhermite(n, 5/28)) \\ Charles R Greathouse IV, Jan 29 2016 (MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(5/14)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 09 2018 CROSSREFS Cf. A001023 (denominators). Sequence in context: A121668 A234311 A237430 * A215437 A098038 A072172 Adjacent sequences:  A160190 A160191 A160192 * A160194 A160195 A160196 KEYWORD sign,frac AUTHOR N. J. A. Sloane, Nov 12 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 06:01 EDT 2019. Contains 328291 sequences. (Running on oeis4.)