login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160189 Prime terms subtracted from Fibonacci terms (ignoring first two terms of Fibonacci sequence). 2
0, 0, 0, 1, 2, 8, 17, 36, 66, 115, 202, 340, 569, 944, 1550, 2531, 4122, 6704, 10879, 17640, 28584, 46289, 74942, 121304, 196321, 317710, 514126, 831933, 1346160, 2178196, 3524451, 5702756, 9227328, 14930213, 24157668, 39088018, 63245829, 102333992 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Superimpose Fibonacci sequence over the prime sequence (ignoring first two Fibonacci terms); subtract the prime term from the Fibonacci term.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

FORMULA

Line up Fibonacci sequence above the prime sequence so that the 2,3,5, terms are one above the other. Then subtract the prime terms from the Fibonacci.

EXAMPLE

a(6)=8 because prime term 13 subtracted from Fibonacci term 21 = 8.

MATHEMATICA

Table[Fibonacci[2 + n] - Prime[n], {n, 40}] (* Harvey P. Dale, Sep 05 2015 *)

PROG

(UBASIC) 10 'Fibo Fib-Prm 20 P=1:A=1:B=1:Q=Q+1 30 C=A+B:E=nxtprm(P):print C-E; :P=E 40 D=B+C:E=nxtprm(P):print D-E; :P=E 50 Q=Q+1 60 A=C:B=D:if Q<40 then 30 ' Enoch Haga, May 05 2009

(MAGMA) [Fibonacci(n+2) - NthPrime(n): n in [1..40]]; // Vincenzo Librandi, May 20 2016

CROSSREFS

Cf. A004399.

Sequence in context: A294537 A294548 A061150 * A281470 A295147 A215933

Adjacent sequences:  A160186 A160187 A160188 * A160190 A160191 A160192

KEYWORD

easy,nonn

AUTHOR

Enoch Haga, May 04 2009; corrected May 05 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 17 17:27 EST 2018. Contains 299296 sequences. (Running on oeis4.)