This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A160149 Number of Hamiltonian cycles in P_9 X P_2n. 3
 1, 596, 175294, 49483138, 13916993782, 3913787773536, 1100831164969864, 309656520296472068, 87106950271042689032, 24503579727182933530758, 6892987382635818948665404, 1939035566761570513740174424 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Stoyan & Strehl determined the rational generating function for the number of Hamiltonian cycles in P_9 X P_n with degree of denominator equal to 208. LINKS Robert G. Wilson v, Table of n, a(n) for n = 1..104 . [From Robert G. Wilson v, May 20 2010] Robert Stoyan and Volker Strehl, Enumeration of Hamiltonian Circuits in rectangular grids, Seminaire Lotharingien de Combinatoire, B34f (1995), 21pp. FORMULA Recurrence: a(n) = 672a(n-1) - 178941a(n-2) + 26786039a(n-3) - 2607448600a(n-4) + 179022506347a(n-5) - 9138846694357a(n-6) + 360041299997972a(n-7) - 11254854430370909a(n-8) + 285239012592685968a(n-9) - 5964627217090541641a(n-10) + 104500678360781697484a(n-11) - 1556583951761808187351a(n-12) + 20014735589628148063803a(n-13) - 225840870982639685350870a(n-14) + 2275592733721786744418588a(n-15) - 20826364708844211419088048a(n-16) + 175698356667789807902833571a(n-17) - 1381174156518847754742200917a(n-18) + 10170019003804901336735147471a(n-19) - 70003420053325632588023367766a(n-20) + 446182037050452191079109199615a(n-21) - 2595362044476627757245437008109a(n-22) + 13570008625005415621556838250183a(n-23) - 63003395189524492106909601816507a(n-24) + 257826103840415278692445505871098a(n-25) - 927795089970952084248323277475301a(n-26) + 2943063243792739889950387942270474a(n-27) - 8284388338421319713668314321950849a(n-28) + 20893786955948014423103382099606436a(n-29) - 47682931456935989016644226476248441a(n-30) + 99034722216970869411718009120972998a(n-31) - 186613940860788357047700590145469850a(n-32) + 314393511785306230125922905225687470a(n-33) - 461228773076139092991049045910233189a(n-34) + 568163799314454613889626216489802291a(n-35) - 569970237446092330623145821872270554a(n-36) + 516255441745874003918772527423187876a(n-37) - 750331973988610457686979424425455695a(n-38) + 1948116315614897591684683097566788710a(n-39) - 4767578165656000132898694536173303552a(n-40) + 9223068331940449503246199380170797588a(n-41) - 14439385882606881084375341082872500069a(n-42) + 19203524833778237619399199496120112344a(n-43) - 22654155027324560919450394582691204737a(n-44) + 24342554197365645052552314094292020138a(n-45) - 24340773477750862776080869834954798051a(n-46) + 24250658103545708573796143054316829733a(n-47) - 27745190966510447840996071368294727573a(n-48) + 38425792204525402615949097274689190884a(n-49) - 55422759326895948871535222743427159802a(n-50) + 70729055476730900234366793432472266368a(n-51) - 73819925880373004637572018001559769310a(n-52) + 63388514129546493372164181497486524518a(n-53) - 52759270432980368768927960250795764010a(n-54) + 55764118845777226484391752561108715665a(n-55) - 66464113509700746109349441075277770500a(n-56) + 62296605320562742399955687633954554900a(n-57) - 31148391366039709828008192258625920077a(n-58) - 12485250186916140101609953912898081887a(n-59) + 42654862914755984553959255801657245314a(n-60) - 47023712901001741125118508732822852170a(n-61) + 33080927717174510775217853281082076598a(n-62) - 15494466120988713368893421376058986544a(n-63) + 3429254057650617087578787175065609089a(n-64) + 1834366466922000360932519537787508153a(n-65) - 2847750979275136270288226785862119971a(n-66) + 2216810876719448894152498968621570249a(n-67) - 1347444141266719076559545050826163790a(n-68) + 701841127814802063228662479499782493a(n-69) - 318066936221517953502258428878290012a(n-70) + 121105551713136925328282829822866983a(n-71) - 34745081077056040606914781189637450a(n-72) + 4499432686690403495320601923345141a(n-73) + 2575385020956666440077901987225623a(n-74) - 2619480426445702741842509277432650a(n-75) + 1531700770701230953980399995413110a(n-76) - 725941992725792269897852489297623a(n-77) + 293308884467487194944446092523363a(n-78) - 99272941541573765316896500953947a(n-79) + 26610547639802501699214550716520a(n-80) - 4823713154410742640789125247946a(n-81) + 74930790097929859308142401662a(n-82) + 395529202546191570854138851376a(n-83) - 214011709513320393200145896220a(n-84) + 78239618982805866166560174399a(n-85) - 22992955661092007469888280252a(n-86) + 5643220564094431894769771279a(n-87) - 1159808414772210919562895201a(n-88) + 197576217930011633432855397a(n-89) - 27350727342373286714221107a(n-90) + 2950281377202644726344372a(n-91) - 220666390717767574487088a(n-92) + 5787537137476979667629a(n-93) + 1229475105352798691453a(n-94) - 232763105542097450138a(n-95) + 23427163147889339094a(n-96) - 1633355302567880268a(n-97) + 82645890727987184a(n-98) - 2982658741842664a(n-99) + 72036310273096a(n-100) - 1019997566464a(n-101) + 5772791568a(n-102) - 24126720a(n-103) + 628224a(n-104), with initial terms as given in the b-file. CROSSREFS Sequence in context: A321012 A238034 A293098 * A251224 A210384 A215195 Adjacent sequences:  A160146 A160147 A160148 * A160150 A160151 A160152 KEYWORD nonn AUTHOR Artem M. Karavaev, May 03 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 23:17 EST 2019. Contains 329909 sequences. (Running on oeis4.)