login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160149 Number of Hamiltonian cycles in P_9 X P_2n. 3
1, 596, 175294, 49483138, 13916993782, 3913787773536, 1100831164969864, 309656520296472068, 87106950271042689032, 24503579727182933530758, 6892987382635818948665404, 1939035566761570513740174424 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Stoyan & Strehl determined the rational generating function for the number of Hamiltonian cycles in P_9 X P_n with degree of denominator equal to 208.

LINKS

Robert G. Wilson v, Table of n, a(n) for n = 1..104 . [From Robert G. Wilson v, May 20 2010]

Robert Stoyan and Volker Strehl, Enumeration of Hamiltonian Circuits in rectangular grids, Seminaire Lotharingien de Combinatoire, B34f (1995), 21pp.

Index entries for sequences related to graphs, Hamiltonian

FORMULA

Recurrence: a(n) = 672a(n-1)

- 178941a(n-2)

+ 26786039a(n-3)

- 2607448600a(n-4)

+ 179022506347a(n-5)

- 9138846694357a(n-6)

+ 360041299997972a(n-7)

- 11254854430370909a(n-8)

+ 285239012592685968a(n-9)

- 5964627217090541641a(n-10)

+ 104500678360781697484a(n-11)

- 1556583951761808187351a(n-12)

+ 20014735589628148063803a(n-13)

- 225840870982639685350870a(n-14)

+ 2275592733721786744418588a(n-15)

- 20826364708844211419088048a(n-16)

+ 175698356667789807902833571a(n-17)

- 1381174156518847754742200917a(n-18)

+ 10170019003804901336735147471a(n-19)

- 70003420053325632588023367766a(n-20)

+ 446182037050452191079109199615a(n-21)

- 2595362044476627757245437008109a(n-22)

+ 13570008625005415621556838250183a(n-23)

- 63003395189524492106909601816507a(n-24)

+ 257826103840415278692445505871098a(n-25)

- 927795089970952084248323277475301a(n-26)

+ 2943063243792739889950387942270474a(n-27)

- 8284388338421319713668314321950849a(n-28)

+ 20893786955948014423103382099606436a(n-29)

- 47682931456935989016644226476248441a(n-30)

+ 99034722216970869411718009120972998a(n-31)

- 186613940860788357047700590145469850a(n-32)

+ 314393511785306230125922905225687470a(n-33)

- 461228773076139092991049045910233189a(n-34)

+ 568163799314454613889626216489802291a(n-35)

- 569970237446092330623145821872270554a(n-36)

+ 516255441745874003918772527423187876a(n-37)

- 750331973988610457686979424425455695a(n-38)

+ 1948116315614897591684683097566788710a(n-39)

- 4767578165656000132898694536173303552a(n-40)

+ 9223068331940449503246199380170797588a(n-41)

- 14439385882606881084375341082872500069a(n-42)

+ 19203524833778237619399199496120112344a(n-43)

- 22654155027324560919450394582691204737a(n-44)

+ 24342554197365645052552314094292020138a(n-45)

- 24340773477750862776080869834954798051a(n-46)

+ 24250658103545708573796143054316829733a(n-47)

- 27745190966510447840996071368294727573a(n-48)

+ 38425792204525402615949097274689190884a(n-49)

- 55422759326895948871535222743427159802a(n-50)

+ 70729055476730900234366793432472266368a(n-51)

- 73819925880373004637572018001559769310a(n-52)

+ 63388514129546493372164181497486524518a(n-53)

- 52759270432980368768927960250795764010a(n-54)

+ 55764118845777226484391752561108715665a(n-55)

- 66464113509700746109349441075277770500a(n-56)

+ 62296605320562742399955687633954554900a(n-57)

- 31148391366039709828008192258625920077a(n-58)

- 12485250186916140101609953912898081887a(n-59)

+ 42654862914755984553959255801657245314a(n-60)

- 47023712901001741125118508732822852170a(n-61)

+ 33080927717174510775217853281082076598a(n-62)

- 15494466120988713368893421376058986544a(n-63)

+ 3429254057650617087578787175065609089a(n-64)

+ 1834366466922000360932519537787508153a(n-65)

- 2847750979275136270288226785862119971a(n-66)

+ 2216810876719448894152498968621570249a(n-67)

- 1347444141266719076559545050826163790a(n-68)

+ 701841127814802063228662479499782493a(n-69)

- 318066936221517953502258428878290012a(n-70)

+ 121105551713136925328282829822866983a(n-71)

- 34745081077056040606914781189637450a(n-72)

+ 4499432686690403495320601923345141a(n-73)

+ 2575385020956666440077901987225623a(n-74)

- 2619480426445702741842509277432650a(n-75)

+ 1531700770701230953980399995413110a(n-76)

- 725941992725792269897852489297623a(n-77)

+ 293308884467487194944446092523363a(n-78)

- 99272941541573765316896500953947a(n-79)

+ 26610547639802501699214550716520a(n-80)

- 4823713154410742640789125247946a(n-81)

+ 74930790097929859308142401662a(n-82)

+ 395529202546191570854138851376a(n-83)

- 214011709513320393200145896220a(n-84)

+ 78239618982805866166560174399a(n-85)

- 22992955661092007469888280252a(n-86)

+ 5643220564094431894769771279a(n-87)

- 1159808414772210919562895201a(n-88)

+ 197576217930011633432855397a(n-89)

- 27350727342373286714221107a(n-90)

+ 2950281377202644726344372a(n-91)

- 220666390717767574487088a(n-92)

+ 5787537137476979667629a(n-93)

+ 1229475105352798691453a(n-94)

- 232763105542097450138a(n-95)

+ 23427163147889339094a(n-96)

- 1633355302567880268a(n-97)

+ 82645890727987184a(n-98)

- 2982658741842664a(n-99)

+ 72036310273096a(n-100)

- 1019997566464a(n-101)

+ 5772791568a(n-102)

- 24126720a(n-103)

+ 628224a(n-104), with initial terms as given in the b-file.

CROSSREFS

Sequence in context: A321012 A238034 A293098 * A251224 A210384 A215195

Adjacent sequences:  A160146 A160147 A160148 * A160150 A160151 A160152

KEYWORD

nonn

AUTHOR

Artem M. Karavaev, May 03 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 23:17 EST 2019. Contains 329909 sequences. (Running on oeis4.)