

A160119


A threedimensional version of the cellular automaton A160118, using cubes.


6



0, 1, 27, 35, 235, 243, 443, 499, 1899, 1907, 2107, 2163, 3563, 3619, 5019, 5411, 15211, 15219, 15419, 15475, 16875, 16931, 18331, 18723, 28523, 28579, 29979, 30371, 40171, 40563, 50363, 53107, 121707
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Each cell has 26 neighbors.
Differs from A160379 in the same way that A160118 differs from A160117.  N. J. A. Sloane, Jan 01 2010


LINKS

Table of n, a(n) for n=0..32.
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n1)1) for n >= 2.]
N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
Index entries for sequences related to cellular automata


FORMULA

Contribution from Nathaniel Johnston, Mar 24 2011: (Start)
a(2n1) = 27 + 8*Sum_{k=1..n1}A151785(k) + 200*Sum_{k=1..n2}A151785(k), n >= 2.
a(2n) = 27 + 8*Sum_{k=1..n1}A151785(k) + 200*Sum_{k=1..n1}A151785(k), n >= 1.
In general, a ddimensional version of the cellular automaton A160118 has its cell count given by the following formulas (where wt(k) = A000120(k)):
a(2n1) = 3^d + (2^d)*Sum_{k=1..n1}(2^d1)^(wt(k)1) + (2^d)*(3^d2)*Sum_{k=1..n2}(2^d1)^(wt(k)1), n >= 2.
a(2n) = 3^d + (2^d)*Sum_{k=1..n1}(2^d1)^(wt(k)1) + (2^d)*(3^d2)*Sum_{k=1..n1}(2^d1)^(wt(k)1), n >= 1. (End)


CROSSREFS

Cf. A139250, A139251, A160117, A160118.
Sequence in context: A226191 A098883 A326893 * A160379 A152053 A166649
Adjacent sequences: A160116 A160117 A160118 * A160120 A160121 A160122


KEYWORD

nonn


AUTHOR

Omar E. Pol, May 05 2009


EXTENSIONS

More terms from Omar E. Pol, May 11 2009
Edited by N. J. A. Sloane, Sep 05 2009
a(8)a(32) from Nathaniel Johnston, Mar 24 2011


STATUS

approved



