This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A160113 Number of cubefree integers not exceeding 2^n. 6
 1, 2, 4, 7, 14, 27, 54, 107, 214, 427, 854, 1706, 3410, 6815, 13629, 27259, 54521, 109042, 218080, 436158, 872318, 1744638, 3489278, 6978546, 13957092, 27914186, 55828364, 111656716, 223313428, 446626866, 893253744, 1786507472, 3573014938 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS An alternate definition specifying "less than 2^n" would yield the same sequence except for the first 3 terms: 0,1,3,7,14,27,54,107, etc. (since powers of 2 beyond 8 are not cubefree). The limit of a(n)/2^n is the inverse of Apery's constant, 1/zeta(3) [see A088453]. LINKS G. P. Michon, Table of n, a(n) for n=0..80 G. P. Michon, On the number of cubefree integers not exceeding N. FORMULA a(n) = Sum for i=1 to 2^(n/3) of A008683(i)*floor(2^n/i^3) EXAMPLE a(0)=1 because there is just one cubefree integer (1) not exceeding 2^0 = 1. a(3)=7 because 1,2,3,4,5,6,7 are cubefree but 8 is not. MATHEMATICA a[n_] := Sum[ MoebiusMu[i]*Floor[2^n/i^3], {i, 1, 2^(n/3)}]; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Dec 20 2011, from formula *) PROG (Haskell) a160113 = a060431 . (2 ^)  -- Reinhard Zumkeller, Jul 27 2015 CROSSREFS A004709 (cubefree numbers). A160112 (decimal counterpart for cubefree integers). A143658 (binary counterpart for squarefree integers). A071172 & A053462 (decimal counterpart for squarefree integers). Cf. A060431. Sequence in context: A107949 A155099 A136322 * A171231 A094057 A119267 Adjacent sequences:  A160110 A160111 A160112 * A160114 A160115 A160116 KEYWORD easy,nice,nonn AUTHOR Gerard P. Michon, May 02 2009, May 06 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 13:06 EDT 2019. Contains 328030 sequences. (Running on oeis4.)