%I #7 Sep 25 2018 08:08:39
%S 1,1,1,2,1,10,1382,28,3617,87734,349222,3418052,472728182,34212412,
%T 94997844116,68926730208040,7709321041217,5155375716734,
%U 52630543106106954746,11719975655366236,522165436992898244102
%N Numerators of |Bernoulli(n)*Gould(n)| for even n, (Gould A001316).
%C A001897 give the denominators of |Bernoulli(n)*Gould(n)| for even n, also the denominators of the cosecant numbers.
%H G. C. Greubel, <a href="/A160110/b160110.txt">Table of n, a(n) for n = 0..314</a>
%p b := n -> bernoulli(n)*2^add(i,i=convert(n,base,2));
%p a := n -> numer(abs(b(2*n)));
%t G[n_] := Sum[Mod[Binomial[n, k], 2], {k, 0, n}]; (* A001316 *) Table[Abs[BernoulliB[n]*G[n]], {n, 0, 20}][[1 ;; -1 ;; 2]]//Numerator (* _G. C. Greubel_, Sep 25 2018 *)
%Y Cf. A001897.
%K frac,nonn
%O 0,4
%A _Peter Luschny_, May 02 2009