This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A160096 Partial sums of A010815 starting with offset 1, and signed (+ + - - + + ...). 3
 1, 2, 2, 2, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS INVERT transform of the sequence = A137682: (1, 3, 7, 17, 40, 96, 228,...). From Mats Granvik, Jan 01 2015: (Start) (1) The natural numbers are the row sums of the infinite lower triangular matrix "t" starting: 1,0,0,0,0,0,0,... 1,1,0,0,0,0,0,... 1,1,1,0,0,0,0,... 1,1,1,1,0,0,0,... 1,1,1,1,1,0,0,... 1,1,1,1,1,1,0,... 1,1,1,1,1,1,1,... ................. which satisfies the recurrence: t[n_, 1] = 1; t[n_, k_] := t[n, k] = If[n >= k, Sum[t[n - i, k - 1], {i, 1, n - 1}] - Sum[t[n - i, k], {i, 1, n - 1}], 0]; (2) This sequence a(n), in turn, is the row sums of the infinite lower triangular matrix "t" starting: 1,0,0,0,0,0,0,... 1,1,0,0,0,0,0,... 1,0,1,0,0,0,0,... 1,0,0,1,0,0,0,... 1,0,-1,0,1,0,0,... 1,0,0,-1,0,1,0,... 1,0,0,-1,-1,0,1,... ................... which satisfies the recurrence: t[n_, 1] = 1; t[n_, k_] := t[n, k] = If[n >= k, Sum[t[n - i, k - 1], {i, 1, k - 1}] - Sum[t[n - i, k], {i, 1, n - 1}], 0]; (3) The partition numbers are the row sums of the infinite lower triangular matrix "t" starting: 1,0,0,0,0,0,0,... 1,1,0,0,0,0,0,... 1,1,1,0,0,0,0,... 1,2,1,1,0,0,0,... 1,2,2,1,1,0,0,... 1,3,3,2,1,1,0,... 1,3,4,3,2,1,1,... ................. which satisfies the recurrence: t[n_, 1] = 1; t[n_, k_] := t[n, k] = If[n >= k, Sum[t[n - i, k - 1], {i, 1, n - 1}] - Sum[t[n - i, k], {i, 1, k - 1}], 0]; (4) The number of divisors of "n" is the row sums of the infinite lower triangular matrix "t" starting: 1,0,0,0,0,0,0,... 1,1,0,0,0,0,0,... 1,0,1,0,0,0,0,... 1,1,0,1,0,0,0,... 1,0,0,0,1,0,0,... 1,1,1,0,0,1,0,... 1,0,0,0,0,0,1,... ................. which satisfies the recurrence: t[n_, 1] = 1; t[n_, k_] := t[n, k] = If[n >= k, Sum[t[n - i, k - 1], {i, 1, k - 1}] - Sum[t[n - i, k], {i, 1, k - 1}], 0]. In the four cases of recurrences only the summation index within the sums change, from (1) "n-1" and "n-1" to (2) "k-1" and "n-1" to (3) "n-1" and "k-1" to (4) "k-1" and "k-1". (End) LINKS FORMULA Partial sums of Euler's q series (signed), starting from offset 1 = (1, 1, 0, 0, -1, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, ...). G.f.: (1 - f(-x)) / (1 - x) where f(-x) is the g.f. of A010815. - Michael Somos, Jan 02 2015 EXAMPLE The series begins (1, 2, 2, 2, 1, 1, 0, ...) since the signed q-series = (1, 1, 0, 0, -1, 0, ...). G.f. = x + 2*x^2 + 2*x^3 + 2*x^4 + x^5 + x^6 + x^12 + x^13 + x^14 + ... MATHEMATICA (*A160096 as row sums of recursively defined table*) Clear[t]; nn = 90; t[n_, 1] = 1; t[n_, k_] := t[n, k] = If[n >= k, Sum[t[n - i, k - 1], {i, 1, k - 1}] - Sum[t[n - i, k], {i, 1, n - 1}], 0]; PartialSumsOfEulerqSeries = Table[Sum[t[n, k], {k, 1, n}], {n, 1, nn}] (* Mats Granvik, Jan 01 2015 *) a[ n_] := SeriesCoefficient[ (1 - QPochhammer[ x]) / (1 - x), {x, 0, n}]; (* Michael Somos, Jan 02 2015 *) CoefficientList[Series[q*(1/(1 - q)^(2)*QHypergeometricPFQ[{q, q}, {q^2, q}, q, q^2]), {q, 0, 89}], q] (* Mats Granvik, Jan 09 2015 *) PROG (PARI) {a(n) = if( n<0, 0, polcoeff( (1 - eta(x + x * O(x^n))) / (1 - x), n))}; /* Michael Somos, Jan 02 2015 */ CROSSREFS Cf. A101815. Cf. (1) A000027, (2) A160096, (3) A000041, (4) A000005. Sequence in context: A058101 A132980 A106823 * A029446 A288160 A275332 Adjacent sequences:  A160093 A160094 A160095 * A160097 A160098 A160099 KEYWORD nonn AUTHOR Gary W. Adamson, May 01 2009 EXTENSIONS More terms from Mats Granvik, Jan 01 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 17 09:23 EDT 2019. Contains 325100 sequences. (Running on oeis4.)