OFFSET
1,1
COMMENTS
Fermat primes of order 15.
The number of Fermat primes of order 15 exceeds the number of known Fermat primes.
Terms given correspond to n= 0, 1, 2, 3, 4 and 5.
Next term >= 2^2^16 + 15. - Vincenzo Librandi, Jun 07 2016
Next term >= 2^2^17 + 15. - Charles R Greathouse IV, Jun 07 2016
FORMULA
Intersection of the primes and the set of Fermat numbers F(k,m) = 2^(2^k)+m of order m=15.
EXAMPLE
For k = 5, 2^32 + 15 = 4294967311 is prime.
MATHEMATICA
Select[Table[2^(2^n) + 15, {n, 0, 10}], PrimeQ] (* Vincenzo Librandi, Jun 07 2016 *)
PROG
(PARI) g(n, m) = for(x=0, n, y=2^(2^x)+m; if(ispseudoprime(y), print1(y", ")))
(Magma) [a: n in [0..15] | IsPrime(a) where a is 2^(2^n)+15]; // Vincenzo Librandi, Jun 07 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Cino Hilliard, Apr 30 2009
EXTENSIONS
Edited by R. J. Mathar, May 08 2009
STATUS
approved