login
A160019
Triangle: Lodumo_2 applied to each row of Pascal's triangle .
3
1, 1, 3, 1, 0, 3, 1, 3, 5, 7, 1, 0, 2, 4, 3, 1, 3, 0, 2, 5, 7, 1, 0, 3, 2, 5, 4, 7, 1, 3, 5, 7, 9, 11, 13, 15, 1, 0, 2, 4, 6, 8, 10, 12, 3, 1, 3, 0, 2, 4, 6, 8, 10, 5, 7, 1, 0, 3, 2, 4, 6, 8, 10, 5, 12, 7, 1, 3, 5, 7, 0, 2, 4, 6, 9, 11, 13, 15, 1, 0, 2, 4, 3, 6, 8, 10, 5, 12, 14, 16, 7
OFFSET
0,3
LINKS
FORMULA
T(n,0)=A000012(n)=1; T(n,1)=A010674(n). - Philippe Deléham, Nov 15 2011
EXAMPLE
Triangle begins:
1;
1, 3;
1, 0, 3;
1, 3, 5, 7;
1, 0, 2, 4, 3;
1, 3, 0, 2, 5, 7; ...
PROG
(PARI) \\ here S(n, k) is A047999.
S(n, k)={bitand(n-k, k)==0}
row(n)={my(v=vector(n+1), b=0); for(k=0, n, if(S(n, k), b++; v[1+k]=2*b-1, v[1+k]=2*(k-b))); v}
{ for(n=0, 10, print(row(n))) } \\ Andrew Howroyd, Feb 02 2020
CROSSREFS
Row sums are A160020.
Sequence in context: A035674 A058600 A133704 * A227054 A265605 A035629
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Apr 29 2009, May 02 2009
STATUS
approved