The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A159969 Numerator of Hermite(n, 13/24). 1
 1, 13, -119, -9035, -14639, 10218013, 153914329, -15655840187, -513817209695, 29391432064813, 1713902824372009, -62366587629825323, -6240409786798253711, 134413599620299018045, 25111471036836549128569, -215506510190170502086043, -111283139511606108762536639 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..428 FORMULA From G. C. Greubel, Jul 16 2018: (Start) a(n) = 12^n * Hermite(n, 13/24). E.g.f.: exp(13*x - 144*x^2). a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(13/12)^(n-2*k)/(k!*(n-2*k)!)). (End) EXAMPLE Numerators of 1, 13/12, -119/144, -9035/1728, -14639/20736, ... MATHEMATICA Numerator[Table[HermiteH[n, 13/24], {n, 0, 30}]] (* or *) Table[12^n* HermiteH[n, 1/12], {n, 0, 30}] (* G. C. Greubel, Jul 16 2018 *) PROG (PARI) a(n)=numerator(polhermite(n, 13/24)) \\ Charles R Greathouse IV, Jan 29 2016 (PARI) x='x+O('x^30); Vec(serlaplace(exp(13*x - 144*x^2))) \\ G. C. Greubel, Jul 16 2018 (MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(13/12)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 16 2018 CROSSREFS Cf. A001021 (denominators). Sequence in context: A051824 A016285 A121086 * A253512 A295048 A295376 Adjacent sequences:  A159966 A159967 A159968 * A159970 A159971 A159972 KEYWORD sign,frac AUTHOR N. J. A. Sloane, Nov 12 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 19 13:56 EDT 2020. Contains 337178 sequences. (Running on oeis4.)