The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A159946 Numerator of Hermite(n, 20/23). 1
 1, 40, 542, -62960, -4238708, 96898400, 26298701320, 436837009600, -177294701591920, -10789176512931200, 1256633088041014240, 164414811028452665600, -8048103437483217101120, -2409334578316563726502400, 14320231546481618948708480, 36259873035884206674901888000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..385 FORMULA From G. C. Greubel, Jul 16 2018: (Start) a(n) = 23^n * Hermite(n, 20/23). E.g.f.: exp(40*x - 529*x^2). a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(40/23)^(n-2*k)/(k!*(n-2*k)!)). (End) EXAMPLE Numerators of 1, 40/23, 542/529, -62960/12167, -4238708/279841, ... MATHEMATICA Numerator[Table[HermiteH[n, 20/23], {n, 0, 30}]] (* or *) Table[23^n * HermiteH[n, 20/23], {n, 0, 30}] (* G. C. Greubel, Jul 16 2018 *) PROG (PARI) a(n)=numerator(polhermite(n, 20/23)) \\ Charles R Greathouse IV, Jan 29 2016 (PARI) x='x+O('x^30); Vec(serlaplace(exp(40*x - 529*x^2))) \\ G. C. Greubel, Jul 16 2018 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(40/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 16 2018 CROSSREFS Cf. A009967 (denominators). Sequence in context: A269692 A247409 A107419 * A185744 A269497 A097823 Adjacent sequences: A159943 A159944 A159945 * A159947 A159948 A159949 KEYWORD sign,frac AUTHOR N. J. A. Sloane, Nov 12 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 26 22:13 EST 2023. Contains 359836 sequences. (Running on oeis4.)