login
A159945
Let f be defined as in A159885. Then a(n) = max{A000120(f^i(2n+1)): 1 <= i <= A159885(n)}.
10
2, 1, 3, 3, 2, 2, 4, 3, 4, 1, 3, 4, 3, 3, 5, 4, 4, 3, 5, 8, 2, 2, 4, 3, 4, 2, 4, 4, 4, 4, 6, 3, 4, 3, 5, 8, 4, 4, 6, 5, 6, 1, 3, 3, 3, 3, 5, 8, 4, 3, 6, 6, 3, 3, 5, 4, 5, 3, 5, 5, 5, 5, 7, 8, 4, 4, 5, 8, 5, 4, 6, 8, 6, 3, 5, 5, 6, 5, 7, 8, 6, 5, 8, 7, 2, 2, 4, 3, 4, 2, 4, 4, 4, 4, 6, 8, 6, 3, 5, 5, 4, 4, 7, 5, 6
OFFSET
1,1
COMMENTS
Problem: find an upper estimate for a(n).
PROG
(PARI)
A006519(n) = (1<<valuation(n, 2));
f(n) = ((3*((n-1)/2))+2)/A006519((3*((n-1)/2))+2); \\ Defined for odd n only. Cf. A075677.
A159945(n) = { my(w=hammingweight(n), m = 0, n = (n+n+1)); for(k=1, oo, n = f(n); m = max(m, hammingweight(n)); if(hammingweight(n) <= w, return(m))); }; \\ Antti Karttunen, Sep 22 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Apr 27 2009
EXTENSIONS
More terms from Antti Karttunen, Sep 22 2018
STATUS
approved