login
A159922
Least index m such that the five numbers 2*prime(m+k) + 3^n, k=0 to 4, are five consecutive primes.
0
643266, 8813528, 1644953, 440421, 2826655, 1339785, 2775232, 988180, 196973, 643136, 4122122, 3477939, 182124, 6195602, 130854, 4937610, 2725523, 6118932, 231670, 478208, 2405748, 3913626, 1033788, 2945487, 22952758, 7168835, 15528738, 2753214, 2407038, 37795639
OFFSET
1,1
FORMULA
a(1) = A102810(1) = A102811(5) = A089009(11). - R. J. Mathar, Apr 28 2009
EXAMPLE
For n=15, prime(m=130854) = 1739401 starts the prime sequence 1739401, 1739411, 1739417, 1739443, 1739447 of five consecutive primes.
With 3^n = 3^15 = 14348907, the five numbers 17827709 = 2*1739401+14348907, 17827729 = 2*1739411 + 14348907, 17827741 = 2*1739417 + 14348907, 17827793 = 2*1739443 + 14348907, 17827801 = 2*1739447 + 14348907 are consecutive primes, and m = 130854 is the smallest prime index of this kind, so a(n=15) = 130854.
PROG
(PARI) a(n) = {my(m=1, p=[2, 3, 5, 7, 11], q, x=3^n); while(ispseudoprime(q=(2*p[1]+x)) + sum(k=2, 5, (q=nextprime(q+1))==2*p[k]+x) < 5, m++; p=concat(p[2..5], nextprime(p[5]+1))); m; } \\ Jinyuan Wang, Mar 20 2020
CROSSREFS
Sequence in context: A089220 A052243 A102810 * A154873 A061406 A231323
KEYWORD
nonn
AUTHOR
Pierre CAMI, Apr 26 2009
EXTENSIONS
Edited by R. J. Mathar, Apr 28 2009
Replaced the wrong value 14348916 by 14348907 (3^15=14348907). - Pierre CAMI, May 09 2009
More terms from Jinyuan Wang, Mar 20 2020
STATUS
approved