login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159896 Positive numbers y such that y^2 is of the form x^2+(x+839)^2 with integer x. 4
785, 839, 901, 3809, 4195, 4621, 22069, 24331, 26825, 128605, 141791, 156329, 749561, 826415, 911149, 4368761, 4816699, 5310565, 25463005, 28073779, 30952241, 148409269, 163625975, 180402881, 864992609, 953682071, 1051465045 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

(-56, a(1)) and (A130647(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+839)^2 = y^2.

lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).

lim_{n -> infinity} a(n)/a(n-1) = (843+58*sqrt(2))/839 for n mod 3 = {0, 2}.

lim_{n -> infinity} a(n)/a(n-1) = (1760979+1141390*sqrt(2))/839^2 for n mod 3 = 1.

For the generic case x^2+(x+p)^2=y^2 with p=m^2-2 a prime number in A028871, m>=5, the x values are given by the sequence defined by: a(n) = 6*a(n-3) -a(n-6) +2*p with a(1)=0, a(2) = 2*m+2, a(3) = 3*m^2 -10*m +8, a(4) = 3*p, a(5) = 3*m^2 +10*m +8, a(6) = 20*m^2 -58*m +42. Y values are given by the sequence defined by: b(n) = 6*b(n-3) -b(n-6) with b(1)=p, b(2)= m^2 +2*m +2, b(3)= 5*m^2 -14*m +10, b(4)= 5*p, b(5)= 5*m^2 +14*m +10, b(6)= 29*m^2 -82*m +58. - Mohamed Bouhamida, Sep 09 2009

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..3895

Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).

FORMULA

a(n) = 6*a(n-3) -a(n-6) for n > 6; a(1)=785, a(2)=839, a(3)=901, a(4)=3809, a(5)=4195, a(6)=4621.

G.f.: (1-x)*(785+1624*x+2525*x^2+1624*x^3+785*x^4)/(1-6*x^3+x^6).

a(3*k-1) = 839*A001653(k) for k >= 1.

EXAMPLE

(-56, a(1)) = (-56, 785) is a solution: (-56)^2+(-56+839)^2 = 3136+613089 = 616225 = 785^2.

(A130647(1), a(2)) = (0, 839) is a solution: 0^2+(0+839)^2 = 703921 = 839^2.

(A130647(3), a(4)) = (2241, 3809) is a solution: 2241^2+(2241+839)^2 = 5022081+9486400 = 14508481 = 3809^2.

MATHEMATICA

LinearRecurrence[{0, 0, 6, 0, 0, -1}, {785, 839, 901, 3809, 4195, 4621}, 30] (* Harvey P. Dale, Mar 03 2013 *)

PROG

(PARI) {forstep(n=-56, 10000000, [1, 3], if(issquare(2*n^2+1678*n+703921, &k), print1(k, ", ")))}

(Magma) I:=[785, 839, 901, 3809, 4195, 4621]; [n le 6 select I[n] else 6*Self(n-3) -Self(n-6): n in [1..30]]; // G. C. Greubel, May 17 2018

(PARI) is(n, p=839)=for(m=sqrtint((max(n, 984)^2-p^2)\2)-p\2, n, m^2+(m+p)^2<n^2||return(m^2+(m+p)^2==n^2))

A159896(n)=(matrix(6, 6, i, j, if(i<6, i+1==j, j==4, 6, j==1, -1))^n*[785, 839, 901, 3809, 4195, 4621]~)[1] \\ M. F. Hasler, May 17 2018

CROSSREFS

Cf. A130647, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A159897 (decimal expansion of (843+58*sqrt(2))/839), A159898 (decimal expansion of (1760979+1141390*sqrt(2))/839^2).

Sequence in context: A151658 A231771 A252389 * A031734 A097776 A031526

Adjacent sequences: A159893 A159894 A159895 * A159897 A159898 A159899

KEYWORD

nonn,easy

AUTHOR

Klaus Brockhaus, Apr 30 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 03:48 EST 2022. Contains 358672 sequences. (Running on oeis4.)