login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159871 Numerator of Hermite(n, 7/23). 1
1, 14, -862, -41692, 2152300, 206572744, -8493648584, -1430234859088, 42880673385872, 12705837274723040, -230428050134150624, -137653751068447871936, 754569132502974755008, 1758215991420055828669568, 14236680031434866820993920, -25843381744473778798759726336 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..385

FORMULA

From G. C. Greubel, Jul 14 2018: (Start)

a(n) = 23^n * Hermite(n, 7/23).

E.g.f.: exp(14*x - 529*x^2).

a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(14/23)^(n-2*k)/(k!*(n-2*k)!)). (End)

MATHEMATICA

Numerator[Table[HermiteH[n, 7/23], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *)

Table[23^n*HermiteH[n, 7/23], {n, 0, 30}] (* G. C. Greubel, Jul 14 2018 *)

PROG

(PARI) a(n)=numerator(polhermite(n, 7/23)) \\ Charles R Greathouse IV, Jan 29 2016

(PARI) x='x+O('x^30); Vec(serlaplace(exp(14*x - 529*x^2))) \\ G. C. Greubel, Jul 14 2018

(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(14/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 14 2018

CROSSREFS

Cf. A159858, A159859.

Sequence in context: A002429 A064345 A269335 * A269610 A115458 A241801

Adjacent sequences:  A159868 A159869 A159870 * A159872 A159873 A159874

KEYWORD

sign,frac

AUTHOR

N. J. A. Sloane, Nov 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 23 15:58 EDT 2019. Contains 325258 sequences. (Running on oeis4.)