login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159864 Difference array of Fibonacci numbers A000045 read by antidiagonals. 1
0, 1, 1, 1, 0, -1, 2, 1, 1, 2, 3, 1, 0, -1, -3, 5, 2, 1, 1, 2, 5, 8, 3, 1, 0, -1, -3, -8, 13, 5, 2, 1, 1, 2, 5, 13, 21, 8, 3, 1, 0, -1, -3, -8, -21, 34, 13, 5, 2, 1, 1, 2, 5, 13, 34, 55, 21, 8, 3, 1, 0, -1, -3, -8, -21, -55 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,7

LINKS

Table of n, a(n) for n=0..65.

FORMULA

Conjecture row sums: sum_{k=0..n} T(2n,k)=0. sum_{k=0..n} T(2n+1,k) = A025169(n). [From R. J. Mathar, May 29 2009]

EXAMPLE

Triangle begins : 0 ; 1,1 ; 1,0,-1 ; 2,1,1,2 ; 3,1,0,-1,-3 ; ...

MAPLE

A159864Q := proc(n, k) option remember; if n = 0 then combinat[fibonacci](k) ; else procname(n-1, k+1) -procname(n-1, k) ; fi; end: A159864 := proc(n, k) A159864Q(k, n-k) ; end: for n from 0 to 5 do for k from 0 to n do printf("%d, ", A159864(n, k)) ; od: od: [From R. J. Mathar, May 29 2009]

MATHEMATICA

nmax = 10; f = Table[Fibonacci[n], {n, 0, nmax}]; t = Table[Differences[f, n], {n, 0, nmax}]; Table[t[[n-k+1, k+1]], {n, 0, nmax}, {k, n, 0, -1}]  // Flatten (* Jean-François Alcover, Apr 14 2015 *)

CROSSREFS

Sequence in context: A177858 A166967 A136256 * A144790 A090996 A237453

Adjacent sequences:  A159861 A159862 A159863 * A159865 A159866 A159867

KEYWORD

easy,sign,tabl

AUTHOR

Philippe Deléham, Apr 24 2009

EXTENSIONS

Sign of a(65) = -55 corrected by Jean-François Alcover, Apr 14 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 4 11:13 EST 2016. Contains 278750 sequences.