This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A159864 Difference array of Fibonacci numbers A000045 read by antidiagonals. 1
 0, 1, 1, 1, 0, -1, 2, 1, 1, 2, 3, 1, 0, -1, -3, 5, 2, 1, 1, 2, 5, 8, 3, 1, 0, -1, -3, -8, 13, 5, 2, 1, 1, 2, 5, 13, 21, 8, 3, 1, 0, -1, -3, -8, -21, 34, 13, 5, 2, 1, 1, 2, 5, 13, 34, 55, 21, 8, 3, 1, 0, -1, -3, -8, -21, -55 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 LINKS FORMULA Conjecture row sums: sum_{k=0..n} T(2n,k)=0. sum_{k=0..n} T(2n+1,k) = A025169(n). [From R. J. Mathar, May 29 2009] EXAMPLE Triangle begins : 0 ; 1,1 ; 1,0,-1 ; 2,1,1,2 ; 3,1,0,-1,-3 ; ... MAPLE A159864Q := proc(n, k) option remember; if n = 0 then combinat[fibonacci](k) ; else procname(n-1, k+1) -procname(n-1, k) ; fi; end: A159864 := proc(n, k) A159864Q(k, n-k) ; end: for n from 0 to 5 do for k from 0 to n do printf("%d, ", A159864(n, k)) ; od: od: [From R. J. Mathar, May 29 2009] MATHEMATICA nmax = 10; f = Table[Fibonacci[n], {n, 0, nmax}]; t = Table[Differences[f, n], {n, 0, nmax}]; Table[t[[n-k+1, k+1]], {n, 0, nmax}, {k, n, 0, -1}]  // Flatten (* Jean-François Alcover, Apr 14 2015 *) CROSSREFS Sequence in context: A177858 A166967 A136256 * A144790 A090996 A237453 Adjacent sequences:  A159861 A159862 A159863 * A159865 A159866 A159867 KEYWORD easy,sign,tabl AUTHOR Philippe Deléham, Apr 24 2009 EXTENSIONS Sign of a(65) = -55 corrected by Jean-François Alcover, Apr 14 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.