This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A159864 Difference array of Fibonacci numbers A000045 read by antidiagonals. 1
 0, 1, 1, 1, 0, -1, 2, 1, 1, 2, 3, 1, 0, -1, -3, 5, 2, 1, 1, 2, 5, 8, 3, 1, 0, -1, -3, -8, 13, 5, 2, 1, 1, 2, 5, 13, 21, 8, 3, 1, 0, -1, -3, -8, -21, 34, 13, 5, 2, 1, 1, 2, 5, 13, 34, 55, 21, 8, 3, 1, 0, -1, -3, -8, -21, -55 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 LINKS FORMULA Conjecture row sums: sum_{k=0..n} T(2n,k)=0. sum_{k=0..n} T(2n+1,k) = A025169(n). [From R. J. Mathar, May 29 2009] EXAMPLE Triangle begins : 0 ; 1,1 ; 1,0,-1 ; 2,1,1,2 ; 3,1,0,-1,-3 ; ... MAPLE A159864Q := proc(n, k) option remember; if n = 0 then combinat[fibonacci](k) ; else procname(n-1, k+1) -procname(n-1, k) ; fi; end: A159864 := proc(n, k) A159864Q(k, n-k) ; end: for n from 0 to 5 do for k from 0 to n do printf("%d, ", A159864(n, k)) ; od: od: [From R. J. Mathar, May 29 2009] MATHEMATICA nmax = 10; f = Table[Fibonacci[n], {n, 0, nmax}]; t = Table[Differences[f, n], {n, 0, nmax}]; Table[t[[n-k+1, k+1]], {n, 0, nmax}, {k, n, 0, -1}]  // Flatten (* Jean-François Alcover, Apr 14 2015 *) CROSSREFS Sequence in context: A166967 A136256 A283440 * A144790 A090996 A237453 Adjacent sequences:  A159861 A159862 A159863 * A159865 A159866 A159867 KEYWORD easy,sign,tabl AUTHOR Philippe Deléham, Apr 24 2009 EXTENSIONS Sign of a(65) = -55 corrected by Jean-François Alcover, Apr 14 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 22 22:22 EDT 2017. Contains 290952 sequences.