|
|
A159859
|
|
Numerator of Hermite(n, 2/23).
|
|
4
|
|
|
1, 4, -1042, -12632, 3256780, 66485744, -16962423224, -489901195808, 123664101613712, 4641180127773760, -1158964855054670624, -53739545172065063296, 13273074802437996468928, 735369564714290029481728, -179616392573875043315708800, -11610759562843564089946190336
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..385
|
|
FORMULA
|
From G. C. Greubel, Jul 09 2018: (Start)
a(n) = 23^n * Hermite(n, 2/23).
E.g.f.: exp(4*x-529*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(4/23)^(n-2*k)/(k!*(n-2*k)!)). (End)
|
|
MATHEMATICA
|
Numerator[Table[HermiteH[n, 2/23], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *)
Table[23^n*HermiteH[n, 2/23], {n, 0, 30}] (* G. C. Greubel, Jul 09 2018 *)
|
|
PROG
|
(PARI) a(n)=numerator(polhermite(n, 2/23)) \\ Charles R Greathouse IV, Jan 29 2016
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(4/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 09 2018
|
|
CROSSREFS
|
Cf. A159858.
Sequence in context: A139300 A004804 A221228 * A110499 A009013 A351618
Adjacent sequences: A159856 A159857 A159858 * A159860 A159861 A159862
|
|
KEYWORD
|
sign,frac
|
|
AUTHOR
|
N. J. A. Sloane, Nov 12 2009
|
|
STATUS
|
approved
|
|
|
|