login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159853 Riordan array ((1-2*x+2*x^2)/(1-x), x/(1-x)). 2
1, -1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 4, 4, 3, 1, 1, 4, 7, 8, 7, 4, 1, 1, 5, 11, 15, 15, 11, 5, 1, 1, 6, 16, 26, 30, 26, 16, 6, 1, 1, 7, 22, 42, 56, 56, 42, 22, 7, 1, 1, 8, 29, 64, 98, 112, 98, 64, 29, 8, 1, 1, 9, 37, 93, 162, 210, 210, 162, 93, 37, 9, 1, 1, 10, 46, 130, 255 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,12

COMMENTS

Essentially the same as A087698.

LINKS

Muniru A Asiru, Table of n, a(n) for n = 0..5151

P. Bala, A note on the diagonals of a proper Riordan Array

FORMULA

From Peter Bala, Mar 20 2018: (Start)

T(n,k) = C(n,k) - 2*C(n-1,n-k-1) + 2*C(n-2,n-k-2), where C(n,k) = n!/(k!*(n-k)!) for 0 <= k <= n, otherwise 0.

Exp(x) * the e.g.f. for row n = the e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(1 + x + x^2/2! + x^3/3!) = 1 + 2*x + 2*x^2/2! + 4*x^3/3! + 8*x^4/4! + 15*x^5/5! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1-x) ). (End)

EXAMPLE

Triangle begins :

   1;

  -1,1;

   1,0,1;

   1,1,1,1;

   1,2,2,2,1;

   1,3,4,4,3,1;

   ...

MAPLE

C := proc (n, k) if 0 <= k and k <= n then factorial(n)/(factorial(k)*factorial(n-k)) else 0 end if;

end proc:

for n from 0 to 10 do

  seq(C(n, n-k) - 2*C(n-1, n-k-1) + 2*C(n-2, n-k-2), k = 0..n);

end do; # Peter Bala, Mar 20 2018

MATHEMATICA

Join[{1, -1}, Rest[T[0, 0]=1; T[n_, k_]:=Binomial[n, n - k] - 2 Binomial[n - 1, n - k - 1] + 2 Binomial[n - 2, n - k - 2]; Table[T[n, k], {n, 1, 15}, {k, 0, n}]//Flatten]] (* Vincenzo Librandi, Mar 22 2018 *)

PROG

(Sage)

# Function riordan_array defined in A256893.

riordan_array((1-2*x+2*x^2)/(1-x), x/(1-x), 8) # Peter Luschny, Mar 21 2018

(GAP) Flat(List([0..12], n->List([0..n], k->Binomial(n, k)-2*Binomial(n-1, n-k-1)+2*Binomial(n-2, n-k-2)))); # Muniru A Asiru, Mar 22 2018

(MAGMA) /* As triangle */ [[Binomial(n, n-k)-2*Binomial(n-1, n-k-1)+2*Binomial(n-2, n-k-2): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Mar 22 2018

CROSSREFS

Cf. A087698.

Sequence in context: A277447 A213126 A118400 * A087698 A101677 A152067

Adjacent sequences:  A159850 A159851 A159852 * A159854 A159855 A159856

KEYWORD

easy,sign,tabl

AUTHOR

Philippe Deléham, Apr 24 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 00:32 EST 2019. Contains 329871 sequences. (Running on oeis4.)