This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A159850 Numerator of Hermite(n, 17/22). 2

%I

%S 1,17,47,-7429,-160415,4464217,269993839,-1892147821,-489536076223,

%T -4658915114335,987008017069999,28053710866880683,

%U -2150502256703365727,-118026514721378720791,4759029349325350323695,480777330814562061542723,-9102061914203466628786559

%N Numerator of Hermite(n, 17/22).

%H Robert Israel, <a href="/A159850/b159850.txt">Table of n, a(n) for n = 0..435</a>

%H Simon Plouffe, <a href="http://vixra.org/abs/1409.0048">Conjectures of the OEIS, as of June 20, 2018.</a>

%F a(n) = 17*a(n-1) + 242*(1-n)*a(n-2). - _Robert Israel_, Dec 07 2017

%F E.g.f.: exp(17*x - 121*x^2). - _Simon Plouffe_, Jun 23 2018

%F From _G. C. Greubel_, Jun 02 2018: (Start)

%F a(n) = 11^n * Hermite(n, 17/22).

%F a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(17/11)^(n-2*k)/(k!*(n-2*k)!)). (End)

%e Numerators of 1, 17/11, 47/121, -7429/1331, -160415/14641, ...

%p f:= gfun:-rectoproc({a(n) = 17*a(n-1)+242*(1-n)*a(n-2), a(0)=1,a(1)=17},a(n),remember):

%p map(f, [\$0..40]); # _Robert Israel_, Dec 07 2017

%t Numerator[Table[HermiteH[n,17/22],{n,0,30}]] (* _Vladimir Joseph Stephan Orlovsky_, Jun 22 2011 *)

%t Table[11^n*HermiteH[n, 17/22], {n,0,30}] (* _G. C. Greubel_, Jul 09 2018 *)

%o (PARI) a(n)=numerator(polhermite(n, 17/22)) \\ _Charles R Greathouse IV_, Jan 29 2016

%o (MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(17/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jul 09 2018

%Y Cf. A001020 (denominators).

%K sign,frac

%O 0,2

%A _N. J. A. Sloane_, Nov 12 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 04:15 EST 2019. Contains 329885 sequences. (Running on oeis4.)