%I #10 Sep 08 2022 08:45:44
%S 1,1,6,0,8,3,5,9,7,5,9,6,1,4,9,7,5,2,6,0,5,7,0,0,3,2,6,3,2,8,6,8,2,0,
%T 4,0,9,4,3,0,7,7,3,0,6,7,5,8,8,6,4,6,3,1,4,1,5,2,4,0,6,2,1,1,8,2,0,7,
%U 4,6,0,5,6,2,1,6,0,4,4,7,5,6,2,0,1,4,3,3,7,7,8,0,0,6,8,2,5,5,7,0,3,7,3,0,6
%N Decimal expansion of (363 + 38*sqrt(2))/359.
%C Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = {1, 2}, b = A130610.
%C Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = {0, 2}, b = A159844.
%H G. C. Greubel, <a href="/A159845/b159845.txt">Table of n, a(n) for n = 1..10000</a>
%F Equals (19 + sqrt(2))/(19 - sqrt(2)).
%e (363 + 38*sqrt(2))/359 = 1.16083597596149752605...
%t RealDigits[(363 +38*sqrt(2))/359, 10, 100][[1]] (* _G. C. Greubel_, May 19 2018 *)
%o (PARI) (363 +38*sqrt(2))/359 \\ _G. C. Greubel_, May 19 2018
%o (Magma) (363 +38*Sqrt(2))/359; // _G. C. Greubel_, May 19 2018
%Y Cf. A130610, A159844, A002193 (decimal expansion of sqrt(2)), A159846 (decimal expansion of (293619+186550*sqrt(2))/359^2).
%K cons,nonn
%O 1,3
%A _Klaus Brockhaus_, Apr 30 2009