%I #10 Sep 08 2022 08:45:44
%S 1,2,0,8,1,9,0,1,6,5,3,4,1,6,7,1,9,7,9,6,5,9,4,2,0,0,0,7,7,4,1,2,1,4,
%T 9,8,8,1,4,8,3,8,6,3,5,0,9,4,7,5,7,1,4,8,9,6,6,5,0,2,4,1,7,9,9,9,8,7,
%U 5,3,2,4,8,2,2,3,6,0,1,8,4,3,7,9,1,5,3,1,9,5,5,2,9,0,7,1,4,1,1,2,9,2,3,9,9
%N Decimal expansion of (227+30*sqrt(2))/223.
%C Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = {1, 2}, b = A130609.
%C Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = {0, 2}, b = A159809.
%H G. C. Greubel, <a href="/A159810/b159810.txt">Table of n, a(n) for n = 1..10000</a>
%F Equals (15 +sqrt(2))/(15 -sqrt(2)).
%e (227+30*sqrt(2))/223 = 1.20819016534167197965...
%t RealDigits[(227+30*Sqrt[2])/223,10,120][[1]] (* _Harvey P. Dale_, Sep 10 2017 *)
%o (PARI) (227 +30*sqrt(2))/223 \\ _G. C. Greubel_, May 19 2018
%o (Magma) (227 +30*Sqrt(2))/223; // _G. C. Greubel_, May 19 2018
%Y Cf. A130609, A159809, A002193 (decimal expansion of sqrt(2)), A159811 (decimal expansion of (105507+65798*sqrt(2))/223^2).
%K cons,nonn
%O 1,2
%A _Klaus Brockhaus_, Apr 30 2009