login
A159760
Decimal expansion of (10659+6110*sqrt(2))/79^2.
4
3, 0, 9, 2, 4, 2, 8, 2, 7, 5, 2, 9, 2, 3, 5, 8, 7, 1, 6, 2, 5, 9, 9, 4, 5, 2, 1, 7, 9, 0, 1, 1, 7, 8, 5, 3, 8, 7, 0, 5, 4, 4, 7, 0, 6, 9, 1, 4, 8, 0, 7, 7, 6, 6, 8, 1, 7, 9, 7, 0, 0, 8, 8, 1, 1, 2, 8, 5, 6, 5, 2, 0, 4, 8, 3, 9, 5, 2, 4, 7, 5, 6, 8, 2, 9, 9, 7, 4, 0, 1, 6, 1, 4, 1, 9, 4, 6, 8, 0, 4, 9, 0, 4, 8, 1
OFFSET
1,1
COMMENTS
Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = 0, b = A118676.
Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = 1, b = A159758.
LINKS
FORMULA
Equals (130 + 47*sqrt(2))/(130 - 47*sqrt(2)).
Equals (3 + 2*sqrt(2))*(9 - sqrt(2))^2/(9 + sqrt(2))^2.
EXAMPLE
(10659+6110*sqrt(2))/79^2 = 3.09242827529235871625...
MATHEMATICA
RealDigits[(10659 + 6110*Sqrt[2])/79^2, 10, 100][[1]] (* G. C. Greubel, May 21 2018 *)
PROG
(PARI) (10659+6110*sqrt(2))/79^2 \\ G. C. Greubel, May 21 2018
(Magma) (10659 +6110*Sqrt(2))/79^2 // G. C. Greubel, May 21 2018
CROSSREFS
Cf. A118676, A159758, A002193 (decimal expansion of sqrt(2)), A159759 (decimal expansion of (83+18*sqrt(2))/79).
Sequence in context: A243262 A191661 A296487 * A021101 A154202 A352491
KEYWORD
cons,nonn
AUTHOR
Klaus Brockhaus, Apr 30 2009
STATUS
approved