%I #10 Sep 08 2022 08:45:44
%S 1,5,0,6,3,6,1,4,8,6,6,6,4,3,2,6,1,8,4,7,4,9,4,3,9,1,9,4,4,4,5,4,4,1,
%T 9,8,0,8,5,0,5,4,0,5,5,8,6,2,2,9,2,0,7,0,2,6,4,8,3,7,2,6,8,7,9,1,2,1,
%U 3,3,0,7,8,6,9,0,8,4,0,3,9,4,5,5,1,1,7,9,2,6,5,5,4,4,4,0,3,8,7,2,7,2,9,5,7
%N Decimal expansion of (51 + 14*sqrt(2))/47.
%C Equals Lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = {1, 2}, b = A118675.
%C Equals Lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = {0, 2}. b = A159750.
%H G. C. Greubel, <a href="/A159751/b159751.txt">Table of n, a(n) for n = 1..10000</a>
%F Equals (7 + sqrt(2))/(7 - sqrt(2)).
%e (51 + 14*sqrt(2))/47 = 1.50636148666432618474...
%t RealDigits[(51 +14*Sqrt[2])/47, 10, 100][[1]] (* _G. C. Greubel_, May 22 2018 *)
%o (PARI) (51 +14*sqrt(2))/47 \\ _G. C. Greubel_, May 22 2018
%o (Magma) (51 +14*Sqrt(2))/47; // _G. C. Greubel_, May 22 2018
%Y Cf. A118675, A159750, A002193 (decimal expansion of sqrt(2)), A159752 (decimal expansion of (3267+1702*sqrt(2))/47^2).
%K cons,nonn
%O 1,2
%A _Klaus Brockhaus_, Apr 30 2009