login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159697 a(0)=9, a(n) = 2*a(n-1) + 2^(n-1) for n > 0. 5
9, 19, 40, 84, 176, 368, 768, 1600, 3328, 6912, 14336, 29696, 61440, 126976, 262144, 540672, 1114112, 2293760, 4718592, 9699328, 19922944, 40894464, 83886080, 171966464, 352321536, 721420288, 1476395008, 3019898880 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Diagonal of triangles A062111, A152920.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..3300

Index entries for linear recurrences with constant coefficients, signature (4, -4).

FORMULA

a(n) = Sum_{k=0..n} (k+9)*binomial(n,k).

From R. J. Mathar, Apr 20 2009: (Start)

a(n) = (18+n)*2^(n-1).

a(n) = 4*a(n-1) - 4*a(n-2).

G.f.: (9-17*x)/(1-2*x)^2. (End)

a(0)=9, a(1)=19, a(n) = 4*a(n-1) - 4*a(n-2). - Harvey P. Dale, Mar 24 2013

a(n) = 2*A079862(n-10). - Michel Marcus, Sep 29 2015

E.g.f.: (x+9)*exp(2*x). - G. C. Greubel, Jun 02 2018

EXAMPLE

a(0)=9, a(1) = 2*9 + 1 = 19, a(2) = 2*19 + 2 = 40, a(3) = 2*40 + 4 = 84, a(4) = 2*84 + 8 = 176, ...

MATHEMATICA

RecurrenceTable[{a[0]==9, a[n]==2a[n-1]+2^(n-1)}, a, {n, 30}] (* or *) LinearRecurrence[{4, -4}, {9, 19}, 30] (* Harvey P. Dale, Mar 24 2013 *)

PROG

(PARI) Vec((9-17*x)/(1-2*x)^2 + O(x^40)) \\ Michel Marcus, Sep 29 2015

(MAGMA) I:=[9, 19]; [n le 2 select I[n] else 4*Self(n-1) - 4*Self(n-2): n in [1..30]]; // G. C. Greubel, Jun 02 2018

CROSSREFS

Cf. A000079, A001787, A001792, A045623, A045891, A034007, A111297, A159694, A159695, A159696.

Sequence in context: A290245 A039299 A211114 * A014005 A286624 A058510

Adjacent sequences:  A159694 A159695 A159696 * A159698 A159699 A159700

KEYWORD

easy,nonn

AUTHOR

Philippe Deléham, Apr 20 2009

EXTENSIONS

More terms from Vincenzo Librandi, Apr 30 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 24 18:25 EDT 2019. Contains 324330 sequences. (Running on oeis4.)