login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159695 a(0)=7, a(n) = 2*a(n-1) + 2^(n-1) for n > 0. 7

%I

%S 7,15,32,68,144,304,640,1344,2816,5888,12288,25600,53248,110592,

%T 229376,475136,983040,2031616,4194304,8650752,17825792,36700160,

%U 75497472,155189248,318767104,654311424,1342177280,2751463424,5637144576

%N a(0)=7, a(n) = 2*a(n-1) + 2^(n-1) for n > 0.

%C Diagonal of triangles A062111, A152920.

%H G. C. Greubel, <a href="/A159695/b159695.txt">Table of n, a(n) for n = 0..3300</a>

%F a(n) = Sum_{k=0..n} (k+7)*binomial(n,k).

%F From _R. J. Mathar_, Apr 20 2009: (Start)

%F a(n) = (14+n)*2^(n-1).

%F a(n) = 4*a(n-1) - 4*a(n-2).

%F G.f.: (7-13*x)/(1-2x)^2. (End)

%F E.g.f.: (x+7)*exp(2*x). - _G. C. Greubel_, Jun 02 2018

%e a(0)=7, a(1) = 2*7 + 1 = 15, a(2) = 2*15 + 2 = 32, a(3) = 2*32 + 4 = 68, a(4) = 2*68 + 8 = 144, ...

%t LinearRecurrence[{4,-4}, {7,15}, 30] (* or *) Table[(14+n)*2^(n-1), {n, 0, 30}] (* _G. C. Greubel_, Jun 02 2018 *)

%o (PARI) for(n=0, 30, print1((14+n)*2^(n-1), ", ")) \\ _G. C. Greubel_, Jun 02 2018

%o (MAGMA) [(14+n)*2^(n-1): n in [0..30]]; // _G. C. Greubel_, Jun 02 2018

%Y Cf. A000079, A001787, A001792, A045623, A045891, A034007, A111297, A159694.

%K easy,nonn

%O 0,1

%A _Philippe Deléham_, Apr 20 2009

%E More terms from _R. J. Mathar_, Apr 20 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 22:31 EST 2019. Contains 329305 sequences. (Running on oeis4.)