login
Fixed point of the morphism 0 -> 0,1,0; 1 -> 1,1; starting from a(0)=0.
25

%I #10 Jul 15 2018 00:28:29

%S 0,1,0,1,1,0,1,0,1,1,1,1,0,1,0,1,1,0,1,0,1,1,1,1,1,1,1,1,0,1,0,1,1,0,

%T 1,0,1,1,1,1,0,1,0,1,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,

%U 1,0,1,0,1,1,1,1,0,1,0,1,1,0,1,0,1,1,1,1,1,1,1,1,0,1,0,1,1,0,1,0,1,1,1,1,0

%N Fixed point of the morphism 0 -> 0,1,0; 1 -> 1,1; starting from a(0)=0.

%C The number of 1's between successive 0's gives A006519. - _Philippe Deléham_, Apr 22 2009

%C A word that is pure morphic and recurrent, but neither uniform morphic, primitive morphic, nor uniformly recurrent. - _N. J. A. Sloane_, Jul 14 2018

%H Jean-Paul Allouche, Julien Cassaigne, Jeffrey Shallit, Luca Q. Zamboni, <a href="https://arxiv.org/pdf/1711.10807.pdf">A Taxonomy of Morphic Sequences</a>, arXiv preprint arXiv:1711.10807, Nov 29 2017

%t Nest[ Flatten[ # /. {0 -> {0, 1, 0}, 1 -> {1, 1}}] &, {0}, 5] (* _Robert G. Wilson v_, May 02 2009 *)

%Y Sequences mentioned in the Allouche et al. "Taxonomy" paper, listed by example number: 1: A003849, 2: A010060, 3: A010056, 4: A020985 and A020987, 5: A191818, 6: A316340 and A273129, 18: A316341, 19: A030302, 20: A063438, 21: A316342, 22: A316343, 23: A003849 minus its first term, 24: A316344, 25: A316345 and A316824, 26: A020985 and A020987, 27: A316825, 28: A159689, 29: A049320, 30: A003849, 31: A316826, 32: A316827, 33: A316828, 34: A316344, 35: A043529, 36: A316829, 37: A010060.

%K easy,nonn

%O 0,1

%A _Philippe Deléham_, Apr 19 2009

%E More terms from _Robert G. Wilson v_, May 02 2009