OFFSET
1,2
COMMENTS
Positive values of x (or y) satisfying x^2 - 24*x*y + y^2 + 22 = 0. - Colin Barker, Feb 19 2014
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..200
Index entries for linear recurrences with constant coefficients, signature (24,-1).
FORMULA
The a(j) recurrence is a(1)=1, a(2)=23, a(t+2) = 24*a(t+1) - a(t) resulting in terms 1, 23, 551, 13201, ... (this sequence).
The b(j) recurrence is b(1)=1, b(2)=25, b(t+2) = 24*b(t+1) - b(t) resulting in terms 1, 25, 599, 14351, ... (A159661).
The n(j) recurrence is n(0)=n(1)=1, n(2)=48, n(t+3) = 575*(n(t+2) - n(t+1)) + n(t) resulting in terms 0, 0, 48, 27600, 15842400, ... (A159665).
G.f.: x*(1-x)/(1 - 24*x + x^2). - Colin Barker, Feb 19 2014
a(n) = (12+sqrt(143))^(-n)*(13+sqrt(143)-(-13+sqrt(143))*(12+sqrt(143))^(2*n))/26. - Colin Barker, Jul 25 2016
MAPLE
for a from 1 by 2 to 100000 do b:=sqrt((13*a*a-2)/11): if (trunc(b)=b) then
n:=(a*a-1)/11: La:=[La), a]:Lb:=[op(Lb), b]: Ln:=[op(Ln), n]: end if: end do:
# Second program
seq(simplify(ChebyshevU(n-1, 12) - ChebyshevU(n-2, 12)), n=1..30); # G. C. Greubel, Sep 27 2022
MATHEMATICA
CoefficientList[Series[(1-x)/(1-24x+x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 21 2014 *)
LinearRecurrence[{24, -1}, {1, 23}, 30] (* G. C. Greubel, Sep 27 2022 *)
PROG
(PARI) Vec(x*(1-x)/(1-24*x+x^2) + O(x^100)) \\ Colin Barker, Feb 19 2014
(Magma) [n le 2 select 23^(n-1) else 24*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 21 2014
(PARI) a(n) = round((12+sqrt(143))^(-n)*(13+sqrt(143)-(-13+sqrt(143))*(12+sqrt(143))^(2*n))/26) \\ Colin Barker, Jul 25 2016
(SageMath)
def A159664(n): return chebyshev_U(n-1, 12) - chebyshev_U(n-2, 12)
[A159664(n) for n in range(1, 30)] # G. C. Greubel, Sep 27 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Weisenhorn, Apr 19 2009
EXTENSIONS
More terms from Colin Barker, Feb 19 2014
STATUS
approved