login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159659 Numerator of Hermite(n, 7/20). 1
1, 7, -151, -3857, 63601, 3530807, -38885351, -4509165857, 22875330401, 7374792684007, 10447954066249, -14676449689550257, -125720646772599599, 34343434727512419607, 567277724701345894649, -92190673164125353637057, -2347167886252915159406399 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..442

FORMULA

Conjecture: a(n) -7*a(n-1) +200*(n-1)*a(n-2)=0. - R. J. Mathar, Feb 16 2014

From G. C. Greubel, Jul 11 2018: (Start)

a(n) = 10^n * Hermite(n, 7/20).

E.g.f.: exp(7*x - 100*x^2).

a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(7/10)^(n-2*k)/(k!*(n-2*k)!)). (End)

EXAMPLE

Numerator of 1, 7/10, -151/100, -3857/1000, 63601/10000, 3530807/100000,...

MAPLE

A159659 := proc(n)

        orthopoly[H](n, 7/20) ;

        numer(%) ;

end proc: # R. J. Mathar, Feb 16 2014

MATHEMATICA

Numerator[Table[HermiteH[n, 7/20], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 16 2011 *)

Table[10^n*HermiteH[n, 7/20], {n, 0, 50}] (* G. C. Greubel, Jul 11 2018 *)

PROG

(PARI) a(n)=numerator(polhermite(n, 7/20)) \\ Charles R Greathouse IV, Jan 29 2016

(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(7/10)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 11 2018

CROSSREFS

Cf. A011557 (denominators)

Sequence in context: A309855 A232446 A202558 * A100868 A171410 A277122

Adjacent sequences:  A159656 A159657 A159658 * A159660 A159661 A159662

KEYWORD

sign,frac

AUTHOR

N. J. A. Sloane, Nov 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 09:56 EDT 2019. Contains 328315 sequences. (Running on oeis4.)