login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159655 Numerator of Hermite(n, 17/19). 1
1, 34, 434, -34340, -2107604, 27515384, 8543973496, 171298455376, -37357094566000, -2259561093495776, 165921323311011616, 21955356087613897664, -571265042757181733696, -209644216596830988306560, -1766009672973345849952384, 2059039412479673870904327424 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

FORMULA

Conjecture: a(n) -34*a(n-1) +722*(n-1)*a(n-2)=0. - R. J. Mathar, Feb 16 2014

From G. C. Greubel, Jul 11 2018: (Start)

a(n) = 19^n * Hermite(n, 17/19).

E.g.f.: exp(34*x - 361*x^2).

a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(34/19)^(n-2*k)/(k!*(n-2*k)!)). (End)

EXAMPLE

Numerator of 1, 34/19, 434/361, -34340/6859, -2107604/130321, 27515384/2476099,..

MAPLE

A159655 := proc(n)

        orthopoly[H](n, 17/19) ;

        numer(%) ;

end proc: # R. J. Mathar, Feb 16 2014

MATHEMATICA

Numerator[Table[HermiteH[n, 17/19], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 16 2011 *)

Table[19^n*HermiteH[n, 17/19], {n, 0, 50}] (* G. C. Greubel, Jul 11 2018 *)

PROG

(PARI) a(n)=numerator(polhermite(n, 17/19)) \\ Charles R Greathouse IV, Jan 29 2016

(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(34/19)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 11 2018

CROSSREFS

Cf. A001029 (denominators).

Sequence in context: A283227 A033914 A189452 * A271036 A244495 A107917

Adjacent sequences:  A159652 A159653 A159654 * A159656 A159657 A159658

KEYWORD

sign,frac

AUTHOR

N. J. A. Sloane, Nov 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 07:33 EDT 2019. Contains 328252 sequences. (Running on oeis4.)