login
A159653
Numerator of Hermite(n, 15/19).
1
1, 30, 178, -37980, -1524948, 63937800, 7423196280, -54282661200, -39145313835120, -860822763962400, 228541566381737760, 13071387347260660800, -1422935499785941465920, -155938564970244609148800, 8677515651883508324661120, 1836552484275737759015904000
OFFSET
0,2
LINKS
DLMF Digital library of mathematical functions, Table 18.9.1 for H_n(x)
FORMULA
D-finite with recurrence a(n) - 30*a(n-1) + 722*(n-1)*a(n-2) = 0. [DLMF] - R. J. Mathar, Feb 16 2014
From G. C. Greubel, Jul 11 2018: (Start)
a(n) = 19^n * Hermite(n, 15/19).
E.g.f.: exp(30*x - 361*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(30/19)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerator of 1, 30/19, 178/361, -37980/6859, -1524948/130321, 63937800/2476099, ...
MAPLE
A159653 := proc(n)
orthopoly[H](n, 15/19) ;
numer(%) ;
end proc: # R. J. Mathar, Feb 16 2014
MATHEMATICA
Numerator[Table[HermiteH[n, 15/19], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 16 2011 *)
Table[19^n*HermiteH[n, 15/19], {n, 0, 50}] (* G. C. Greubel, Jul 11 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 15/19)) \\ Charles R Greathouse IV, Jan 29 2016
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(30/19)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 11 2018
CROSSREFS
Cf. A001029 (denominators).
Sequence in context: A074357 A140594 A100430 * A369855 A101098 A068236
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved