%I #10 Sep 08 2022 08:45:44
%S 1,0,8,1,7,8,0,0,4,3,6,5,5,9,9,9,1,0,6,2,7,0,2,6,3,9,7,8,4,7,2,2,5,5,
%T 2,2,5,3,9,1,8,2,1,0,0,0,7,9,3,7,7,1,4,5,3,8,3,9,8,1,5,2,5,5,9,0,0,5,
%U 6,6,2,5,8,4,6,1,5,7,0,0,9,7,9,8,8,5,8,4,1,5,9,5,6,0,7,3,4,3,0,6,9,8,3,7,1
%N Decimal expansion of (649 + 36*sqrt(2))/647.
%C Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = {1, 2}, b = A130013.
%C Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = {0, 2}, b = A159641.
%H G. C. Greubel, <a href="/A159642/b159642.txt">Table of n, a(n) for n = 1..10000</a>
%F Equals (36 + sqrt(2))/(36 - sqrt(2)).
%e (649 + 36*sqrt(2))/647 = 1.08178004365599910627...
%t RealDigits[(649+36*Sqrt[2])/647, 10, 100][[1]] (* _G. C. Greubel_, May 10 2018 *)
%o (PARI) (649+36*sqrt(2))/647 \\ _G. C. Greubel_, May 10 2018
%o (Magma) (649+36*Sqrt(2))/647; // _G. C. Greubel_, May 10 2018
%Y Cf. A130013, A159641, A002193 (decimal expansion of sqrt(2)), A159643 (decimal expansion of (1084467+707402*sqrt(2))/647^2).
%K cons,nonn
%O 1,3
%A _Klaus Brockhaus_, Apr 21 2009