login
A159641
Positive numbers y such that y^2 is of the form x^2+(x+647)^2 with integer x.
3
613, 647, 685, 2993, 3235, 3497, 17345, 18763, 20297, 101077, 109343, 118285, 589117, 637295, 689413, 3433625, 3714427, 4018193, 20012633, 21649267, 23419745, 116642173, 126181175, 136500277, 679840405, 735437783, 795581917
OFFSET
1,1
COMMENTS
(-35,a(1)) and (A130013(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+647)^2 = y^2.
FORMULA
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=613, a(2)=647, a(3)=685, a(4)=2993, a(5)=3235, a(6)=3497.
G.f.: (1-x)*(613+1260*x+1945*x^2+1260*x^3+613*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 647*A001653(k) for k >= 1.
Limit_{n -> oo} a(n)/a(n-3) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (649+36*sqrt(2))/647 for n mod 3 = {0, 2}.
Limit_{n -> oo} a(n)/a(n-1) = (1084467+707402*sqrt(2))/647^2 for n mod 3 = 1.
EXAMPLE
(-35, a(1)) = (-35, 613) is a solution: (-35)^2+(-35+647)^2 = 1225+374544 = 375769 = 613^2.
(A130013(1), a(2)) = (0, 647) is a solution: 0^2+(0+647)^2 = 418609 = 647^2.
(A130013(3), a(4)) = (1768, 2993) is a solution: 1768^2+(1768+647)^2 = 3125824+5832225 = 8958049 = 2993^2.
MATHEMATICA
LinearRecurrence[{0, 0, 6, 0, 0, -1}, {613, 647, 685, 2993, 3235, 3497}, 30] (* Harvey P. Dale, Jun 22 2022 *)
PROG
(PARI) {forstep(n=-36, 10000000, [1, 3], if(issquare(2*n^2+1294*n+418609, &k), print1(k, ", ")))}
CROSSREFS
Cf. A130013, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A159642 (decimal expansion of (649+36*sqrt(2))/647), A159643 (decimal expansion of (1084467+707402*sqrt(2))/647^2).
Sequence in context: A253434 A253441 A253158 * A100364 A142435 A090869
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Apr 21 2009
STATUS
approved