OFFSET
1,11
COMMENTS
Contribution from Steven Finch, Apr 22 2009: (Start)
Denote dim{M_k(Gamma_0(N))} by m(k,N) and dim{S_k(Gamma_0(N))} by s(k,N).
We have
m(3/2,N)-s(3/2,N)+m(1/2,N)-s(1/2,N) = m(5/2,N)-s(5/2,N)
hence
s(3/2,N)+s(1/2,N) = m(1/2,N)+m(3/2,N)-(m(5/2,N)-s(5/2,N))
where N is any positive multiple of 4. (End)
LINKS
H. Cohen and J. Oesterle, Dimensions des espaces de formes modulaires, Modular Functions of One Variable. VI, Proc. 1976 Bonn conf., Lect. Notes in Math. 627, Springer-Verlag, 1977, pp. 69-78.
PROG
(Magma) [[4*n, Dimension(CuspidalSubspace(HalfIntegralWeightForms(4*n, 3/2)))] : n in [1..90]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Steven Finch, Apr 17 2009
STATUS
approved