OFFSET
0,5
COMMENTS
The row sums are: {1, 2, 4, 8, 22, 52, 194, 520, 2482, 7220, 41962,...}.
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
T(n, k) = n!*q^k/(n-k)! if floor(n/2) > k-1 otherwise n!*q^(n-k)/k!, with q = 1.
T(n, n-k) = T(n, k).
T(2*n, n) = A001813(n). - G. C. Greubel, Nov 28 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 12, 4, 1;
1, 5, 20, 20, 5, 1;
1, 6, 30, 120, 30, 6, 1;
1, 7, 42, 210, 210, 42, 7, 1;
1, 8, 56, 336, 1680, 336, 56, 8, 1;
1, 9, 72, 504, 3024, 3024, 504, 72, 9, 1;
1, 10, 90, 720, 5040, 30240, 5040, 720, 90, 10, 1;
MATHEMATICA
T[n_, k_, q_]:= If[Floor[n/2]>=k, n!*q^k/(n-k)!, n!*q^(n-k)/k!];
Table[T[n, k, 1], {n, 0, 12}, {k, 0, n}]//Flatten
PROG
(Sage)
f=factorial
def T(n, k, q): return f(n)*q^k/f(n-k) if ((n//2)>k-1) else f(n)*q^(n-k)/f(k)
flatten([[T(n, k, 1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 28 2021
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Apr 17 2009
EXTENSIONS
Edited by N. J. A. Sloane, Apr 17 2009
STATUS
approved