login
Triangle read by rows, n-th row = n terms of A000255: (1, 3, 11, 53, 309, ...); right border = A000166 starting (1, 2, 9, 44, 265, ...).
3

%I #8 Feb 08 2022 23:13:29

%S 1,3,2,11,11,9,53,53,53,44,309,309,309,309,265,2119,2119,2119,2119,

%T 2119,1854,16687,16687,16687,16687,16687,14833,148329,148329,148329,

%U 148329,148329,148329,148329,133496

%N Triangle read by rows, n-th row = n terms of A000255: (1, 3, 11, 53, 309, ...); right border = A000166 starting (1, 2, 9, 44, 265, ...).

%C Row sums = A002469(n+2), representing the game of mousetrap with n cards; where nonzero terms of A002469 start: (1, 5, 31, 203, 1501, ...). A002469(n) = (n-2)*A000255(n-1) + A000166(n). Example 31 = 2*11 + 9 = A002469(4) = 2*A000255(3) + A000166(4).

%F Triangle read by rows, n-th row = n terms of A000255: (1, 3, 11, 53, 309, ...); right border = A000166 starting (1, 2, 9, 44, 265, ...)

%e First few rows of the triangle:

%e 1;

%e 3, 2;

%e 11, 11, 9;

%e 53, 53, 53, 44;

%e 309, 309, 309, 309, 265;

%e 2119, 2119, 2119, 2119, 2119, 1854;

%e 16687, 16687, 16687, 16687, 16687, 16687, 14833;

%e ...

%Y Cf. A002469, A000166, A000255.

%K nonn,tabl

%O 0,2

%A _Gary W. Adamson_, Apr 17 2009