

A159582


Expansion of (1+6*x+x^22*x^3)/((x^2+2*x1)*(x^22*x1)), bisection is NSW numbers


0



1, 6, 7, 34, 41, 198, 239, 1154, 1393, 6726, 8119, 39202, 47321, 228486, 275807, 1331714, 1607521, 7761798, 9369319, 45239074, 54608393, 263672646, 318281039, 1536796802, 1855077841, 8957108166, 10812186007, 52205852194, 63018038201
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Define c = [0, 7, 0, 41, 0, 239, 0, 1393, 0, 8119, 0, 47321, ...] where (c(2n+1)) = A002315(n+1) (NSW numbers). Then (a(n)) has the property c(2n)  a(2n) = a(2n) = A002315(n) and c(2n+1)  a(2n+1) = A002315(n) (NSW numbers).


LINKS

Table of n, a(n) for n=0..28.


FORMULA

a(n) = 3*A078057(n)/2(1)^n*A078057(n)/2. [From R. J. Mathar, Nov 10 2009]


CROSSREFS

A002315
Sequence in context: A095369 A006493 A037375 * A041553 A047190 A033043
Adjacent sequences: A159579 A159580 A159581 * A159583 A159584 A159585


KEYWORD

easy,nonn


AUTHOR

Creighton Dement, Apr 16 2009


STATUS

approved



