login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159558 a(n) = 2^(n^2+n) * C(n-1 + 1/2^n, n) = [x^n] 1/(1 - 2^(n+1)*x)^(1/2^n). 5
1, 2, 10, 204, 18326, 7157436, 11867138452, 81971848887192, 2329289249771718630, 270079267572894401313900, 127115660247624311548253487740, 242023658005438716992830183038644712 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..11.

FORMULA

G.f.: A(x) = Sum_{n>=0} a(n)*x^n/2^(n^2+n) = Sum_{n>=0} (-1)^n*log(1 - x/2^n)^n/n!.

EXAMPLE

G.f.: A(x) = 1 + 2*x/2^2 + 10*x^2/2^6 + 204*x^3/2^12 + 18326*x^4/2^20 +...

A(x) = 1 - log(1-x/2) + log(1-x/4)^2/2! - log(1-x/8)^3/3! +...+ (-1)^n*log(1-x/2^n)^n/n! +...

Illustrate a(n) = [x^n] 1/(1 - 2^(n+1)*x)^(1/2^n):

(1-4*x)^(-1/2) = 1 + (2)*x + 6*x^2 + 20*x^3 + 70*x^4 + 252*x^5 +...

(1-8*x)^(-1/4) = 1 + 2*x + (10)*x^2 + 60*x^3 + 390*x^4 + 2652*x^5 +...

(1-16*x)^(-1/8) = 1 + 2*x + 18*x^2 + (204)*x^3 + 2550*x^4 + 33660*x^5 +...

(1-32*x)^(-1/16) = 1 + 2*x + 34*x^2 + 748*x^3 + (18326)*x^4 + 476476*x^5 +...

(1-64*x)^(-1/32) = 1 + 2*x + 66*x^2 + 2860*x^3 + 138710*x^4 + (7157436)*x^5 +...

where the coefficients in parenthesis form the initial terms of this sequence.

Particular values.

A(1) = 1 + log(2) + log(4/3)^2/2! + log(8/7)^3/3! + log(16/15)^4/4! +...

A(1/2) = 1 + log(4/3) + log(8/7)^2/2! + log(16/15)^3/3! +...

A(1/4) = 1 + log(8/7) + log(16/15)^2/2! + log(32/31)^3/3! +...

A(3/2) = 1 + log(4) + log(8/5)^2/2! + log(16/13)^3/3! + log(32/29)^4/4! +...

Explicitly,

A(1) = 1.734925215983391138169827514899...

A(3/2) = 2.498242012620581570762548014070...

A(r) = 2 at r=1.2139293567161900826815...

A(r) = 3 at r=1.6849757886374480509741...

A(-1) = 0.6191596458119190547682348949108188...

A(-2) = 0.3872099757580366707782339498635620...

A(2) is indeterminate.

PROG

(PARI) a(n)=2^(n^2+n)*binomial(n-1+1/2^n, n)

CROSSREFS

Cf. A159478, A158093, A224883.

Sequence in context: A155200 A156510 A246532 * A001528 A193482 A225371

Adjacent sequences:  A159555 A159556 A159557 * A159559 A159560 A159561

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Apr 21 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 21 23:06 EST 2014. Contains 252326 sequences.