login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159558 a(n) = 2^(n^2+n) * C(n-1 + 1/2^n, n) = [x^n] 1/(1 - 2^(n+1)*x)^(1/2^n). 5
1, 2, 10, 204, 18326, 7157436, 11867138452, 81971848887192, 2329289249771718630, 270079267572894401313900, 127115660247624311548253487740, 242023658005438716992830183038644712 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..11.

FORMULA

G.f.: A(x) = Sum_{n>=0} a(n)*x^n/2^(n^2+n) = Sum_{n>=0} (-1)^n*log(1 - x/2^n)^n/n!.

EXAMPLE

G.f.: A(x) = 1 + 2*x/2^2 + 10*x^2/2^6 + 204*x^3/2^12 + 18326*x^4/2^20 +...

A(x) = 1 - log(1-x/2) + log(1-x/4)^2/2! - log(1-x/8)^3/3! +...+ (-1)^n*log(1-x/2^n)^n/n! +...

Illustrate a(n) = [x^n] 1/(1 - 2^(n+1)*x)^(1/2^n):

(1-4*x)^(-1/2) = 1 + (2)*x + 6*x^2 + 20*x^3 + 70*x^4 + 252*x^5 +...

(1-8*x)^(-1/4) = 1 + 2*x + (10)*x^2 + 60*x^3 + 390*x^4 + 2652*x^5 +...

(1-16*x)^(-1/8) = 1 + 2*x + 18*x^2 + (204)*x^3 + 2550*x^4 + 33660*x^5 +...

(1-32*x)^(-1/16) = 1 + 2*x + 34*x^2 + 748*x^3 + (18326)*x^4 + 476476*x^5 +...

(1-64*x)^(-1/32) = 1 + 2*x + 66*x^2 + 2860*x^3 + 138710*x^4 + (7157436)*x^5 +...

where the coefficients in parenthesis form the initial terms of this sequence.

Particular values.

A(1) = 1 + log(2) + log(4/3)^2/2! + log(8/7)^3/3! + log(16/15)^4/4! +...

A(1/2) = 1 + log(4/3) + log(8/7)^2/2! + log(16/15)^3/3! +...

A(1/4) = 1 + log(8/7) + log(16/15)^2/2! + log(32/31)^3/3! +...

A(3/2) = 1 + log(4) + log(8/5)^2/2! + log(16/13)^3/3! + log(32/29)^4/4! +...

Explicitly,

A(1) = 1.734925215983391138169827514899...

A(3/2) = 2.498242012620581570762548014070...

A(r) = 2 at r=1.2139293567161900826815...

A(r) = 3 at r=1.6849757886374480509741...

A(-1) = 0.6191596458119190547682348949108188...

A(-2) = 0.3872099757580366707782339498635620...

A(2) is indeterminate.

PROG

(PARI) a(n)=2^(n^2+n)*binomial(n-1+1/2^n, n)

CROSSREFS

Cf. A159478, A158093, A224883.

Sequence in context: A264563 A156510 A246532 * A001528 A193482 A225371

Adjacent sequences:  A159555 A159556 A159557 * A159559 A159560 A159561

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Apr 21 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 01:12 EST 2016. Contains 278694 sequences.