login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159529 Numerator of Hermite(n, 1/17). 8
1, 2, -574, -3460, 988396, 9976312, -2836511816, -40270873648, 11395985060240, 209004489868832, -58863905303630816, -1325773762049110592, 371605162396386506944, 9938777138365404080000, -2772363635969717405017216, -85969311875592284625394432, 23864454100106265332248473856 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..404

FORMULA

From G. C. Greubel, Jun 09 2018: (Start)

a(n) = 17^n * Hermite(n,1/17).

E.g.f.: exp(2*x-289*x^2).

a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n!*(2/17)^(n-2k)/(k!*(n-2k)!). (End)

MATHEMATICA

Numerator[Table[HermiteH[n, 1/17], {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2011 *)

PROG

(PARI) a(n)=numerator(polhermite(n, 1/17)) \\ Charles R Greathouse IV, Jan 29 2016

(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(2/17)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 09 2018

CROSSREFS

Cf. A159521.

Sequence in context: A200964 A243479 A049364 * A195001 A163277 A003830

Adjacent sequences:  A159526 A159527 A159528 * A159530 A159531 A159532

KEYWORD

sign,frac

AUTHOR

N. J. A. Sloane, Nov 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 21:48 EST 2019. Contains 329809 sequences. (Running on oeis4.)