login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159525 Numerator of Hermite(n, 9/16). 1
1, 9, -47, -2727, -6495, 1337769, 16196721, -881636103, -22446986943, 700772486985, 32165881341201, -607495851269991, -50757023589840927, 476300415242137833, 88746390990674543025, -54812825197840109511, -170886386128875683593599 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

DLMF Digital library of mathematical functions, Table 18.9.1 for H_n(x)

FORMULA

D-finite with recurrence a(n) -9*a(n-1) +128*(n-1)*a(n-2)=0. [DLMF] - R. J. Mathar, Feb 16 2014

From G. C. Greubel, Jun 09 2018: (Start)

a(n) = 16^n * Hermite(n,9/16).

E.g.f.: exp(18*x-252*x^2).

a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n!*(9/8)^(n-2k)/(k!*(n-2k)!). (End)

EXAMPLE

Numerator of 1, 9/8, -47/64, -2727/512, -6495/4096, 1337769/32768...

MAPLE

A159525 := proc(n)

        orthopoly[H](n, 9/16) ;

        numer(%) ;

end proc: # R. J. Mathar, Feb 16 2014

MATHEMATICA

Numerator[Table[HermiteH[n, 9/16], {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2011 *)

PROG

(PARI) a(n)=numerator(polhermite(n, 9/16)) \\ Charles R Greathouse IV, Jan 29 2016

(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(9/8)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 09 2018

CROSSREFS

Cf. A001018 (denominators).

Sequence in context: A163614 A207318 A293042 * A173895 A286437 A212107

Adjacent sequences:  A159522 A159523 A159524 * A159526 A159527 A159528

KEYWORD

sign,frac

AUTHOR

N. J. A. Sloane, Nov 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 26 05:03 EST 2021. Contains 341629 sequences. (Running on oeis4.)