login
A159522
Numerator of Hermite(n, 3/16).
1
1, 3, -119, -1125, 42321, 702963, -24976551, -614805237, 20534573985, 691164284643, -21582336376791, -949437293473413, 27539617738101489, 1540954535989466835, -41203060308232477191, -2884999709417821999893, 70454876663552890207041
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Jun 09 2018: (Start)
a(n) = 16^n * Hermite(n,3/16).
E.g.f.: exp(6*x-252*x^2).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n!*(3/8)^(n-2k)/(k!*(n-2k)!). (End)
MATHEMATICA
Numerator[Table[HermiteH[n, 3/16], {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2011 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 3/16)) \\ Charles R Greathouse IV, Jan 29 2016
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(3/8)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 09 2018
CROSSREFS
Cf. A159521.
Sequence in context: A143781 A114077 A176996 * A103743 A375935 A304016
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved