Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #12 Sep 08 2022 08:45:43
%S 1,16,-194,-17504,-18164,31216576,540334216,-75639407744,
%T -2912283304304,225705335009536,15406032742583776,-769177483661571584,
%U -88566701814374836544,2736491182742489168896,561899064537972620484736,-8249509418670119836289024
%N Numerator of Hermite(n, 8/15).
%H G. C. Greubel, <a href="/A159517/b159517.txt">Table of n, a(n) for n = 0..412</a>
%F From _G. C. Greubel_, Jun 11 2018: (Start)
%F a(n) = 15^n * Hermite(n,8/15).
%F E.g.f.: exp(16*x-225*x^2).
%F a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(16/15)^(n-2*k)/(k!*(n-2*k)!)). (End)
%t Numerator[Table[HermiteH[n,8/15],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 28 2011 *)
%o (PARI) a(n)=numerator(polhermite(n,8/15)) \\ _Charles R Greathouse IV_, Jan 29 2016
%o (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(16/15)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 11 2018
%Y Cf. A159515, A159516.
%K sign,frac
%O 0,2
%A _N. J. A. Sloane_, Nov 12 2009