login
A159515
Numerator of Hermite(n, 4/15).
3
1, 8, -386, -10288, 438796, 22028768, -811060856, -65966160448, 2027112412816, 253695076915328, -6180244656582176, -1191069803371633408, 21063652623108703936, 6600286159191690034688, -70420078571652397748096, -42145163431480866400519168, 138174222906806753595494656
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Jun 11 2018: (Start)
a(n) = 15^n * Hermite(n,4/15).
E.g.f.: exp(8*x-225*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(8/15)^(n-2*k)/(k!*(n-2*k)!)). (End)
MATHEMATICA
Numerator[Table[HermiteH[n, 4/15], {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 28 2011 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 4/15)) \\ Charles R Greathouse IV, Jan 29 2016
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(8/15)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 11 2018
CROSSREFS
Sequence in context: A151941 A085806 A042115 * A369770 A220799 A220785
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved