login
A159488
Numerator of Hermite(n, 1/13).
13
1, 2, -334, -2020, 334636, 3400312, -558734216, -8013301168, 1305938552720, 24279843463712, -3924105390446816, -89914081688240192, 14409995678304781504, 393511506684111781760, -62530497997102986365056, -1987157445623422924018432, 313055309954065295022797056
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Jun 08 2018: (Start)
a(n) = 13^n * Hermite(n,1/13).
E.g.f.: exp(2*x-169*x^2).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n!*(2/13)^(n-2k)/(k!*(n-2k)!). (End)
MATHEMATICA
Numerator[Table[HermiteH[n, 1/13], {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2011 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 1/13)) \\ Charles R Greathouse IV, Jan 29 2016
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(2/13)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 08 2018
CROSSREFS
Cf. A159280.
Sequence in context: A142355 A203608 A264942 * A083863 A246872 A057626
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved