login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159350 Transform of A056594 by the T_{0,0} transformation (see link). 1
1, 1, 1, 4, 11, 24, 54, 127, 297, 689, 1600, 3721, 8652, 20112, 46753, 108689, 252673, 587392, 1365519, 3174448, 7379698, 17155715, 39882197, 92714861, 215535904, 501060185, 1164823608, 2707886360, 6295072049, 14634267033, 34020543361 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..2700

Richard Choulet, Curtz-like transformation.

Index entries for linear recurrences with constant coefficients, signature (3,-3,4,-2,1).

FORMULA

O.g.f.: (1-z)^2/((1-3*z+2*z^2-z^3)*(1+z^2)).

EXAMPLE

a(n) = 3*a(n-1) - 3*a(n-2) + 4*a(n-3) - 2*a(n-4) + a(n-5) for n >= 5, with a(0)=1, a(1)=1, a(2)=1, a(3)=4, a(4)=11.

MAPLE

a(0):=1: a(1):=1: a(2):=1: a(3):=4: a(4):=11: for n from 0 to 31 do a(n+5):=3*a(n+4)-3*a(n+3)+4*a(n+2)-2*a(n+1)+a(n): od: seq(a(i), i=0..31);

MATHEMATICA

LinearRecurrence[{3, -3, 4, -2, 1}, {1, 1, 1, 4, 11}, 50] (* G. C. Greubel, Jun 15 2018 *)

PROG

(PARI) x='x+O('x^50); Vec((1-x)^2/((1-3*x+2*x^2-x^3)*(1+x^2))) \\ G. C. Greubel, Jun 15 2018

(MAGMA) I:=[1, 1, 1, 4, 11]; [n le 5 select I[n] else 3*Self(n-1) - 3*Self(n-2) +4*Self(n-3) -2*Self(n-4) + Self(n-5): n in [1..50]]; // G. C. Greubel, Jun 15 2018

CROSSREFS

Cf. A137531, A159347, A159348, A159349.

Sequence in context: A260150 A258472 A007678 * A159348 A159349 A192597

Adjacent sequences:  A159347 A159348 A159349 * A159351 A159352 A159353

KEYWORD

easy,nonn

AUTHOR

Richard Choulet, Apr 11 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 01:37 EDT 2018. Contains 316275 sequences. (Running on oeis4.)