Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #19 Jun 17 2018 07:26:10
%S 1,1,1,1,2416,1,1,455192,455192,1,1,45533450,2275172004,45533450,1,1,
%T 3572085255,3207483178157,3207483178157,3572085255,1,1,251732291184,
%U 2527925001876036,37307713155613000,2527925001876036,251732291184,1,1,16871482830550,1454842842001939656
%N Triangle read by rows: every third term of every third row of A008292.
%C Row sums are 1, 2, 2418, 910386, 2366238906, 6422110526826, 42364066623947442, 365177884120263581634, 5244467282898658636883274,
%C 100806053706495867884737652154, 2753506371613138713078675746891778, ...
%H G. C. Greubel, <a href="/A159346/b159346.txt">Rows n = 0..100 of triangle, flattened</a>
%e {1},
%e {1, 1},
%e {1, 2416, 1},
%e {1, 455192, 455192, 1},
%e 1, 45533450, 2275172004, 45533450, 1},
%e {1, 3572085255, 3207483178157, 3207483178157, 3572085255, 1}
%t << DiscreteMath`Combinatorica`
%t k = 3;
%t a = Table[Table[Eulerian[n + 1, k*m], {m, 0, Floor[n/k]}], {n, 0, 10*k,k}];
%t Flatten[%]
%Y Cf. A008292, A085503.
%K nonn,tabl
%O 0,5
%A _Roger L. Bagula_, Dec 13 2010
%E Edited by _N. J. A. Sloane_, Jan 01 2011